
R

Virtex-5 GTP Aurora v2.8

User Guide

UG224 (v1.4) October 10, 2007

Virtex-5 GTP Aurora v2.8 www.xilinx.com UG224 (v1.4) October 10, 2007

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate
on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright
laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents,
copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the
Design. Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx
assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any
liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS
WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR
ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN,
EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN
CONNECTION WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT
EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT
THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE
AVAILABLE THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-
safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or
weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

© 2006-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

11/30/06 1.1 Initial Xilinx release.

03/01/07 1.2 LogiCORE GTP Aurora v2.6 release.

05/17/07 1.3

LogiCORE GTP Aurora v2.7 release.

• Replaced sample design with example design throughout for clarity
• Updated

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 3
UG224 (v1.4) October 10, 2007

Schedule of Figures . 7

Schedule of Tables . 9

Preface: About This Guide
Contents . 11
Additional Resources . 12
Conventions . 12

Typographical . 12
Online Document . 13

Chapter 1: Introduction
About the Core . 15
Recommended Design Experience . 15
Related Xilinx Documents . 16
Additional Core Resources . 16
Technical Support. 16
Feedback. 16

Core . 16
Document . 17

Chapter 2: Installing and Licensing the Core
Before You Begin . 19
System Requirements . 19
Installing the Core . 20

Automated Installation Using WebUpdate . 20
Manual Installation . 20

Obtaining Your License . 21
Installing Your License File . 21

Chapter 3: Customizing the Aurora Core
Introduction . 23
Using the IP Customizer . 23

Page 1 of the IP Customizer . 23
Page 2 of the IP Customizer . 25
Page 3 of the IP Customizer . 26

Aurora Project Directory Structure. 27
Using the Build Script . 28
Example Design Overview . 29
Using the Testbench and Simulation Scripts . 31

Table of Contents

http://www.xilinx.com

4 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

R

Chapter 4: User Interface
Introduction . 33
Framing Interface . 34

LocalLink TX Ports. 34
LocalLink RX Ports . 35
LocalLink Bit Ordering . 35
Transmitting Data . 36
Receiving Data . 41
Framing Efficiency . 42

Streaming Interface . 45
Streaming TX Ports . 45
Streaming RX Ports . 45
Transmitting and Receiving Data . 46

Chapter 5: Flow Control
Introduction . 47
Native Flow Control. 48

Example A: Transmitting an NFC Message . 49
Example B: Receiving a Message with NFC Idles Inserted . 49

User Flow Control. 50
Transmitting UFC Messages . 51
Receiving User Flow Control Messages . 54
Example D: Receiving a Multi-Cycle UFC Message . 54

Chapter 6: Status, Control, and the GTP Block Interface
Introduction . 55
Full-Duplex Cores. 56

Full-Duplex Status and Control Ports . 56
Error Signals in Full-Duplex Cores . 57
Full-Duplex Initialization . 59

Simplex Cores . 59
Simplex TX Status and Control Ports . 59
Simplex RX Status and Control Ports . 61
Simplex Both (RX and TX) Status and Control Ports . 62
Error Signals in Simplex Cores . 64
Simplex Initialization. 65

Reset and Power Down. 67
Reset . 67
Power Down . 67
Timing . 67

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 5
UG224 (v1.4) October 10, 2007

R

Chapter 7: Clock Interface and Clocking
Introduction . 69
Clock Interface Ports for GTP Transceiver Cores . 70
Reference Clocks for GTP Transceiver Designs . 71

Clocking from Inside the FPGA: GREFCLK . 71
Clocking from an External Source . 71
Clocking from a Neighboring GTP_DUAL Tile . 72

Clock Rates for GTP Transceiver Designs. 73

Chapter 8: Clock Compensation
Introduction . 75
Clock Compensation Interface. 76

http://www.xilinx.com

6 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 7
UG224 (v1.4) October 10, 2007

Preface: About This Guide

Chapter 1: Introduction

Chapter 2: Installing and Licensing the Core

Chapter 3: Customizing the Aurora Core
Figure 3-1: Aurora IP Customizer, Page 1 . 23
Figure 3-2: Aurora IP Customizer, Page 2 . 25
Figure 3-3: Aurora IP Customizer, Page 3 . 26
Figure 3-4: Example Design . 29

Chapter 4: User Interface
Figure 4-1: Top-Level User Interface . 33
Figure 4-2: Aurora Core Framing Interface (LocalLink) . 34
Figure 4-3: LocalLink Interface Bit Ordering . 35
Figure 4-4: Simple Data Transfer . 37
Figure 4-5: Data Transfer with Pad . 38
Figure 4-6: Data Transfer with Pause . 38
Figure 4-7: Data Transfer Paused by Clock Compensation . 39
Figure 4-8: Transmitting Data . 40
Figure 4-9: Data Reception with Pause . 41
Figure 4-10: Receiving Data . 42
Figure 4-11: Formula for Calculating Overhead . 43
Figure 4-12: Aurora Core Streaming User Interface. 45
Figure 4-13: Typical Streaming Data Transfer . 46
Figure 4-14: Typical Data Reception. 46

Chapter 5: Flow Control
Figure 5-1: Top-Level Flow Control . 47
Figure 5-2: Transmitting an NFC Message . 49
Figure 5-3: Transmitting a Message with NFC Idles Inserted. 49
Figure 5-4: Data Switching Circuit . 51
Figure 5-5: Transmitting a Single-Cycle UFC Message . 53
Figure 5-6: Transmitting a Multi-Cycle UFC Message . 53
Figure 5-7: Receiving a Single-Cycle UFC Message . 54
Figure 5-8: Receiving a Multi-Cycle UFC Message . 54

Schedule of Figures

http://www.xilinx.com

8 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

R

Chapter 6: Status, Control, and the GTP Block Interface
Figure 6-1: Top-Level GTP Block Interface . 55
Figure 6-2: Status and Control Interface for Full-Duplex Cores . 56
Figure 6-3: Status and Control Interface for Simplex TX Core . 59
Figure 6-4: Status and Control Interface for Simplex RX Core . 61
Figure 6-5: Status and Control Interface for Simplex Both Cores. 62
Figure 6-6: Reset and Power Down Timing . 67

Chapter 7: Clock Interface and Clocking
Figure 7-1: Top-Level Clocking . 69
Figure 7-2: Single GTP_DUAL Tile Clocked from the FPGA . 71
Figure 7-3: Single GTP_DUAL Tile Clocked Externally . 71
Figure 7-4: Multiple Tiles with a Shared Reference Clock . 72

Chapter 8: Clock Compensation
Figure 8-1: Top-Level Clock Compensation . 75
Figure 8-2: Streaming Data with Clock Compensation Inserted . 76
Figure 8-3: Data Reception Interrupted by Clock Compensation 76

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 9
UG224 (v1.4) October 10, 2007

Preface: About This Guide

Chapter 1: Introduction

Chapter 2: Installing and Licensing the Core

Chapter 3: Customizing the Aurora Core
Table 3-1: Build Script Options . 28
Table 3-2: Example Design I/O Ports . 29

Chapter 4: User Interface
Table 4-1: LocalLink User I/O Ports (TX) . 34
Table 4-2: LocalLink User I/O Ports (RX) . 35
Table 4-3: TX Data Remainder Values . 36
Table 4-4: Typical Channel Frame . 37
Table 4-5: Efficiency Example . 43
Table 4-6: Typical Overhead for Transmitting 256 Data Bytes . 44
Table 4-7: TX_REM Value and Corresponding Bytes of Overhead 44
Table 4-8: Streaming User I/O Ports (TX) . 45
Table 4-9: Streaming User I/O Ports (RX). 45

Chapter 5: Flow Control
Table 5-1: NFC Codes . 48
Table 5-2: NFC I/O Ports . 48
Table 5-3: UFC I/O Ports . 50
Table 5-4: SIZE Encoding . 51
Table 5-5: Number of Data Beats Required to Transmit UFC Messages 52

Chapter 6: Status, Control, and the GTP Block Interface
Table 6-1: Status and Control Ports for Full-Duplex Cores . 56
Table 6-2: Error Signals in Full-Duplex Cores . 58
Table 6-3: Status and Control Ports for Simplex TX Cores . 60
Table 6-4: Status and Control Ports for Simplex RX Cores. 61
Table 6-5: Status and Control Ports for Simplex “Both” Cores . 63
Table 6-6: Error Signals in Simplex Cores . 65

Chapter 7: Clock Interface and Clocking
Table 7-1: Clock Ports for a GTP Aurora Core . 70

Schedule of Tables

http://www.xilinx.com

10 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

R

Chapter 8: Clock Compensation
Table 8-1: Clock Compensation I/O Ports . 76
Table 8-2: Clock Compensation Cycles . 77
Table 8-3: Lookahead Cycles . 77
Table 8-4: Standard CC I/O Port. 78

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 11
UG224 (v1.4) October 10, 2007

R

Preface

About This Guide

This user guide describes the function and operation of the LogiCORE™ GTP Aurora core
for Virtex™-5 FPGAs, and provides information about designing, customizing, and
implementing the core.

Contents
This guide contains the following chapters:

• Preface, “About this Guide” introduces the organization and purpose of the design
guide, a list of additional resources, and the conventions used in this document.

• Chapter 1, “Introduction” describes the core and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

• Chapter 2, “Installing and Licensing the Core” provides information about installing
and licensing the core.

• Chapter 3, “Customizing the Aurora Core” describes how to customize an Aurora
core with the available parameters.

• Chapter 4, “User Interface” provides port descriptions for the user interface.

• Chapter 5, “Flow Control” describes the user flow control and native flow control
options for sending and receiving data.

• Chapter 6, “Status, Control, and the GTP Block Interface” provides details on using
the Aurora core's status and control ports to initialize and monitor the Aurora
channel.

• Chapter 7, “Clock Interface and Clocking” describes how to connect FPGA clocking
resources.

• Chapter 8, “Clock Compensation” covers Aurora clock compensation, and explains
how to customize it for a given system.

http://www.xilinx.com

12 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Preface: About This Guide
R

Additional Resources
For additional information, go to http://www.xilinx.com/support. The following table
lists some of the resources you can access from this website or by using the provided URLs.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://www.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

http://www.xilinx.com/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches

http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?categ
ory=Application+Notes

Data Sheets Device-specific information on Xilinx device characteristics, including
readback, boundary scan, configuration, length count, and debugging

http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

http://www.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx design
environment

http://www.xilinx.com/xlnx/xil_tt_home.jsp

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands you enter in a
syntactical statement

ngdbuild design_name

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals See the User Guide for details.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Dark Shading
Items that are not supported or
reserved This feature is not supported

http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/support/techsup/tutorials/index.htm
http://www.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Application+Notes
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.xilinx.com/xlnx/xil_tt_home.jsp

Virtex-5 GTP Aurora v2.8 www.xilinx.com 13
UG224 (v1.4) October 10, 2007

Conventions
R

Online Document
The following linking conventions are used in this document:

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { }
A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |
Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Omitted repetitive material
allow block block_name
loc1 loc2 ... locn;

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address 0x00112975
returned 45524943h.

An ‘_n’ means the signal is
active low

usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text
Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Platform FPGA User Guide.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

14 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Preface: About This Guide
R

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 15
UG224 (v1.4) October 10, 2007

R

Chapter 1

Introduction

This chapter introduces the Aurora core and provides related information, including
recommended design experience, additional resources, technical support, and submitting
feedback to Xilinx.

The LogiCORE GTP Aurora v2.8 core is a high-speed serial solution based on the Aurora
protocol and Virtex-5 RocketIO™ GTP transceivers. The core is delivered as open-source
code and supports both Verilog and VHDL design environments. Each core comes with an
example design and supporting modules.

About the Core
The Aurora core is a CORE Generator™ IP core, included in the latest IP Update on the
Xilinx IP Center. For detailed information about the core, see
http://www.xilinx.com/aurora. For information about system requirements, installation,
and licensing options, see Chapter 2, “Installing and Licensing the Core.”

Recommended Design Experience
Although the Aurora core is a fully verified solution, the challenge associated with
implementing a complete design varies depending on the configuration and functionality
of the application. For best results, previous experience building high performance,
pipelined FPGA designs using Xilinx implementation software and user constraints files
(UCF) is recommended. Read Chapter 6, “Status, Control, and the GTP Block Interface”
carefully, and consult the PCB design requirements information in the Virtex-5 RocketIO
GTP Transceiver User Guide.

Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

http://www.xilinx.com
http://www.xilinx.com/aurora/

16 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 1: Introduction
R

Related Xilinx Documents
Prior to generating an Aurora core, users should be familiar with the following:

• Documents located on the Aurora product page: http://www.xilinx.com/aurora

♦ SP002: Aurora Protocol Specification

♦ UG058: Aurora Bus Functional Model User Guide

• Documents located on the LocalLink product page: http://www.xilinx.com/locallink

♦ SP006: LocalLink Interface Specification

• UG196: Virtex-5 RocketIO GTP Transceiver User Guide

• ISE™ documentation
http://www.xilinx.com/support/sw_manuals/xilinx9/index.htm

Additional Core Resources
For detailed information and updates about the Aurora core, see the following documents,
located on the Aurora product page at http://www.xilinx.com/aurora.

• DS538: (LogiCORE) Virtex-5 GTP Aurora v2.8 Data Sheet

• UG223: Virtex-5 GTP Aurora v2.8 Getting Started Guide

• UG224: Virtex-5 GTP Aurora v2.8 User Guide

• GTP Aurora core Release Notes

Technical Support
For technical support, go to www.xilinx.com/support. Questions are routed to a team of
engineers with expertise using the Aurora core.

Xilinx will provide technical support for use of this product as described in the LogiCORE
GTP Aurora v2.8 license (see Chapter 2, “Installing and Licensing the Core”). Xilinx cannot
guarantee timing, functionality, or support of this product for designs that do not follow
the guidelines in Virtex-5 GTP Aurora v2.8 User Guide and the Virtex-5 GTP Aurora v2.8
Getting Started Guide.

Feedback
Xilinx welcomes comments and suggestions about the Aurora core and the accompanying
documentation.

Core
For comments or suggestions about the Aurora core, please submit a WebCase from
www.xilinx.com/support. Be sure to include the following information:

• Product name

• Core version number

• List of parameter settings

• Explanation of your comments

http://www.xilinx.com/bvdocs/userguides/ug196.pdf
http://www.xilinx.com/bvdocs/userguides/ug196.pdf
http://www.xilinx.com/aurora
http://www.xilinx.com/locallink
http://www.xilinx.com
http://www.xilinx.com/support/sw_manuals/xilinx9/index.htm
http://www.xilinx.com/aurora/
www.xilinx.com/support
www.xilinx.com/support

Virtex-5 GTP Aurora v2.8 www.xilinx.com 17
UG224 (v1.4) October 10, 2007

Feedback
R

Document
For comments or suggestions about this document, please submit a WebCase from
www.xilinx.com/support. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://www.xilinx.com
www.xilinx.com/support

18 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 1: Introduction
R

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 19
UG224 (v1.4) October 10, 2007

R

Chapter 2

Installing and Licensing the Core

This chapter provides instructions for installing the Aurora core in the CORE Generator
tool and how to obtain a free license to use the core.

Before You Begin
Before installing the Wizard, you must have a MySupport account and the ISE 9.2i SP3
software installed on your system. If you have already completed these steps, go to
“Installing the Core,” page 20, otherwise, do the following:

1. Click Login at the top of the Xilinx home page, then follow the onscreen instructions to
create a MySupport account.

2. Install the ISE 9.2i software and the applicable Service Pack. ISE Service Packs can be
downloaded from www.xilinx.com/support/download.htm

System Requirements

Windows

• Windows XP Professional SP1, SP2, 32-bit, 64-bit
• Windows Vista Business 32-bit

Solaris

• Sun Solaris 9, 10

Linux

• Red Hat Enterprise WS 3.0/4.0/5.0 (32-bit or 64-bit)

Software

• ISE 9.2i with applicable Service Pack

Check the release notes for the required Service Pack; ISE Service Packs can be
downloaded from http://www.xilinx.com/support/sw_manuals/xilinx9/index.htm

http://www.xilinx.com/support/sw_manuals/xilinx9/index.htm
http://www.xilinx.com
www.xilinx.com/support/download.htm

20 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 2: Installing and Licensing the Core
R

Installing the Core
You can install the Wizard in two ways: using the CORE Generator WebUpdate facility,
which lets you select from a list of updates, or by performing a manual installation
after downloading the core from the web.

Automated Installation Using WebUpdate
Note: To use this installation method behind a firewall, you must know your proxy settings. If
necessary, contact your administrator to determine the proxy host address and port number
before you begin.

1. From the main CORE Generator window, choose Tools → Software Update...

2. Click OK to close the CORE Generator tool and start WebUpdate.

3. If necessary, click Advanced . . . to specify a proxy host.

4. Click Check for Updates.

5. Ensure ISE 9.2i IP Update 2 is selected in the list of software updates.

6. Click OK.

7. WebUpdate downloads and installs the selected software updates. Restart your
computer when the install is finished.

8. To confirm the installation, from the main CORE Generator window, choose Help →
About Xilinx CORE Generator.

9. Look for the following lines in the About dialog box:

Updates installed:

ISE 9.2i IP Update 2

Manual Installation
1. Close the CORE Generator application if it is running.

2. Download the ZIP file from the following location and save it to a temporary directory:
http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp?update=ip&software=9.2i

Note: Before you can access this page and the files listed on it, you must be registered for
CORE Generator IP Updates access.

3. Extract the ZIP archive file ise_92i_ip_update2.zip to a temporary location.

For Windows

♦ Extract the ZIP archive file using WinZip 7.0 SR-1 or later.

Note: When extracting the files using WinZip, you must check the Use Folder Names
option.

For UNIX

♦ Extract the ZIP archive file using unzip.

Note: You might need system administrator privileges to install the update.

4. In the root level of the extracted directory structure, run the setup (.exe) executable to
install the update.

5. Restart the CORE Generator tool; it automatically detects and displays the newly
installed IP cores.

6. Determine whether the installation was successful by verifying that the new cores are
visible in the main CORE Generator window.

http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp?update=ip&software=9.2i
http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 21
UG224 (v1.4) October 10, 2007

Obtaining Your License
R

Obtaining Your License
To obtain your license for the Aurora core, perform the following steps:

• Navigate to the Aurora product page: http://www.xilinx.com/aurora
• Click the Aurora LogiCORE link at the bottom of the page
• Click Order and Register

Follow the onscreen instructions to review and electronically sign the Aurora License
Agreement and download your license file for the Aurora core.

Installing Your License File
After selecting a license option, an email will be sent to you that includes instructions for
installing your license file. In addition, information about advanced licensing options and
technical support is provided.

http://www.xilinx.com/aurora/
http://www.xilinx.com

22 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 2: Installing and Licensing the Core
R

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 23
UG224 (v1.4) October 10, 2007

R

Chapter 3

Customizing the Aurora Core

Introduction
The Aurora core can be customized to suit a wide variety of requirements using the
CORE Generator tool. This chapter details the customization parameters available to the
user and how these parameters are specified within the IP Customizer interface.

Using the IP Customizer
The Aurora IP Customizer is presented when the user selects the Aurora core in the CORE
Generator tool. For help starting and using the CORE Generator tool, see the CORE
Generator Help in the ISE documentation. Each numbered item in Figure 3-1, Figure 3-2,
and Figure 3-3 corresponds to a section that describes the purpose of the feature.

Page 1 of the IP Customizer
Figure 3-1 shows Page 1 of the customizer. The left side displays a representative block
diagram of the Aurora core as currently configured. The right side consists of user-
configurable parameters.

Figure 3-1: Aurora IP Customizer, Page 1

UG224_03_01_082207

10

3

4

5

1

2

6

7

8

9

http://www.xilinx.com

24 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 3: Customizing the Aurora Core
R

1: Component Name

Enter the top-level name for the core in this text box. Illegal names will be highlighted in
red until they are corrected. All files for the generated core will be placed in a subdirectory
using this name. The top-level module for the core will also use this name.

Default: aurora_201

2: Silicon Version

Select the respective silicon version for the target device.

• ES - Engineering sample.

• PRODUCTION - Production silicon.

Default: ES

3: Target Device

The device selected during project creation is displayed here.

4: HDL

The language selected during project creation is displayed here.

5: Aurora Lanes

Enter the number of lanes (GTP transceivers) to be used in the core. The valid range
depends on the target device selected.

Default: 1

6: Lane Width

The byte width of the GTP transceivers used in the core is fixed at 2.

7: Interface

Use these buttons to select the type of data path interface used for the core. Select Framing
to use a LocalLink interface that allows encapsulation of data frames of any length. Select
Streaming to use a simple word-based interface with a data valid signal to stream data
through the Aurora channel. See Chapter 4, “User Interface” for more information.

Default: Framing

8: Simplex

Check this box to create a simplex core. Simplex Aurora cores have a single, unidirectional
serial port that connects to a complementary simplex Aurora core. Three buttons
representing the mode of the simplex core become active when the simplex checkbox is
activated: RX only, TX only, or Both. Use these buttons to select the direction of the channel
the Aurora core will support. Both creates two cores, one RX and one TX, that share a single
GTP transceiver. See Chapter 6, “Status, Control, and the GTP Block Interface” for more
information.

Default: Not checked (full-duplex mode)

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 25
UG224 (v1.4) October 10, 2007

Using the IP Customizer
R

9: Native Flow Control

Check this box to add native flow control to the core. Native flow control allows full-
duplex receivers to regulate the rate of the data send to them. Two buttons represent the
native flow control mode, Immediate Mode or Completion Mode, for the core. These buttons
are selectable only when Native Flow Control is checked. Immediate mode allows idle
codes to be inserted within data frames while completion mode only inserts idle codes
between complete data frames. See Chapter 5, “Flow Control” for more information.

Default: Immediate Mode

10: User Flow Control

Check this box to add user flow control to the core. User flow control allows applications to
send each other brief, high-priority messages through the Aurora channel. See Chapter 5,
“Flow Control” for more information.

Default: Not checked

Page 2 of the IP Customizer
Figure 3-2 shows Page 2 of the customizer.

11: Line Rate

Enter a floating-point value in gigabits per second. The value entered must be within the
valid range shown. This determines the un-encoded bit rate at which data will be
transferred over the serial link. The aggregate data rate of the core is (0.8*line rate)*Aurora
lanes.

12: Reference Clock Frequency

Select a reference clock frequency from the drop-down list. Reference clock frequencies are
given in megahertz, and depend on the line rate selected. For best results, select the highest
rate that can be practically applied to the reference clock input of the target device.

Figure 3-2: Aurora IP Customizer, Page 2

11

12

UG224_03_02_082207

http://www.xilinx.com

26 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 3: Customizing the Aurora Core
R

Page 3 of the IP Customizer
Figure 3-3 shows Page 3 of the customizer.

13: Information

This section details the layout of the GTP_DUALs for the target device. Refer to the
diagram displayed in the information area in Figure 3-3 when selecting the lane
placement.

This area also includes a diagram of the details of a single GTP_DUAL showing the GTP
transceivers inside of it.

14: Lane Placement

Refer to the diagram in the information area in Figure 3-3. Each numbered column
represents a GTP_DUAL and each active box represents an available GTP transceiver. For
each Aurora Lane in the core, starting with Lane 1, select a GTP transceiver and place the
lane by typing its number in the GTP Placement box. If there are fewer lanes in this
instance of the core than there are available GTP transceivers, put an X in the boxes for all
the unused GTP transceivers.

15: Clock Source

Select a reference clock source for the GTP_DUALs from the drop-down list in this section.

16: Finish Button

Click Finish to generate the core. The modules for the Aurora core are written to the CORE
Generator project directory using the same name as the top level of the core. See “Aurora
Project Directory Structure,” page 27.

Figure 3-3: Aurora IP Customizer, Page 3

13

15

14

16

UG224_03_03_082207

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 27
UG224 (v1.4) October 10, 2007

Aurora Project Directory Structure
R

Aurora Project Directory Structure
The customized Aurora core is delivered as a set of HDL source modules in the selected
language with supporting script and documentation files. These files are arranged in a
predetermined directory structure under the project directory name provided to the CORE
Generator system when the project is created, as shown below.

<top-level name>
 |___readme.txt
 |
 |___aurora_gtp_ug224.pdf (user guide)
 |
 |___aurora_gtp_gsug223.pdf (getting started guide)
 |
 |___src
 | |
 | |___(top-level source file)
 | |
 | |___(remaining Aurora module source files)
 |
 |___ucf
 | |
 | |___<top-level name>.ucf (Aurora module design constraints)
 | |
 | |___aurora_example.ucf (Aurora example design constraints)
 |
 |___examples
 | |
 | |___(aurora_example source file)
 | |
 | |___(remaining source files for submodules used in the example
 | design, not including the cc_manager or the clock module)
 |
 |___scripts
 | |
 | |___(make_aurora build script)
 | |
 | |___(config setup shell script)
 | |
 | |___(simulation script for modelsim)
 |
 |___clock_module (optional)
 | |
 | |___(clock_module source file)
 |
 |___cc_manager (optional)
 | |
 | |___(standard_cc_module source file)
 |
 |___testbench
 |
 |___(testbench files for simulating aurora_example design)

http://www.xilinx.com

28 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 3: Customizing the Aurora Core
R

Using the Build Script
A PERL script called make_aurora.pl is delivered with the Aurora core in the scripts
subdirectory. The script can be used to ease implementation of the Aurora core. Run the
script to synthesize the Aurora core using XST. The script can also be run with the options
shown in Table 3-1 to synthesize using Synplify, generate project files, or implement the
core. Make sure the XILINX environment variable is set properly then run the script by
entering the following command in the scripts directory:

xilperl make_aurora.pl <options>

Table 3-1: Build Script Options

Option Description

-b
For XST synthesis, use this option to generate a bitstream file after place and
route.

-files
Use this option to generate synthesis project files for the core without
running the synthesis or implementation tools.

-h
Use this option to display a help message for the make script without
running any tools.

-m Use this option to run ngdbuild and map after synthesis is complete.

-p
Use this option to run place and route (par). The -m option is automatically
used when -p is selected.

-example
Causes the aurora_example module to be used as the top level. Specify
this option when building the example design.

-synplify
Use this option to invoke the Synplicity synthesis tool instead of XST. Specify
with the -files option above to create a Synplicity project file without
running the tool.

-t Use this option to generate Trace report.

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 29
UG224 (v1.4) October 10, 2007

Example Design Overview
R

Example Design Overview
Each core includes a example design (aurora_example) that uses the core in a simple data
transfer system. In the example design, a frame generator is connected to the TX user
interface, and a frame checker is connected to the RX user interface. Figure 3-4 is a block
diagram of the example design for a full-duplex core. Table 3-2 describes the ports of the
example design.

The example designs uses all the interfaces of the core except for optional flow control.
Simplex cores without a TX or RX interface will have no FRAME_GEN or
FRAME_CHECK block, respectively. The frame generator produces a constant stream of
data for cores with a streaming interface.

Using the scripts provided in the scripts subdirectory, the example design can be used to
quickly get an Aurora design up and running on a board, or perform a quick simulation of
the module. The design can also be used as a reference for the connecting the trickier
interfaces on the Aurora core, such as the clocking interface.

When using the example design on a board, be sure to edit the aurora_example.ucf file
in the ucf subdirectory to supply the correct pins and clock constraints.

Figure 3-4: Example Design

Table 3-2: Example Design I/O Ports

Port Direction Description

RXN[0:m-1] Input Positive differential serial data input pin.

RNP[0:m-1] Input Negative differential serial data input pin.

TXN[0:m-1] Output Positive differential serial data output pin.

TXP[0:m-1] Output Positive differential serial data output pin.

ERROR_COUNT[0:7] Output
Count of the number of data words received by the
frame checker that did not match the expected value.

RESET Input
Reset signal for the example design. The reset is
debounced using a USER_CLK signal generated from
the reference clock input.

Demonstration
Testbench

(example_tb)

Aurora
201

TX

RX

UG224_03_04_033007

FRAME_GEN

FRAME_CHECK

Aurora
201

TX

RX

FRAME_GEN

FRAME_CHECK

Aurora Example Design

Aurora Example Design

http://www.xilinx.com

30 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 3: Customizing the Aurora Core
R

<reference clock(s)> Input

The reference clocks for the Aurora core are brought to
the top level of the example design. See Chapter 7,
“Clock Interface and Clocking” for details about the
reference clocks.

<core error signals> Output

The error signals from the Aurora core's Status and
Control interface are brought to the top level of the
example design and registered. See

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 31
UG224 (v1.4) October 10, 2007

Using the Testbench and Simulation Scripts
R

Using the Testbench and Simulation Scripts
A testbench for simulating a pair of example design modules communicating with each
other is included in the testbench subdirectory. A script is included in the testbench
subdirectory to compile the complete test and prepare a waveform view in ModelSim. For
instructions explaining how to run the simulation, see the Virtex-5 GTP Aurora v2.8 Getting
Started Guide.

Because cores are generated one at a time, simulating simplex cores requires additional
steps (except for simplex Both cores, which can be connected to themselves). To simulate a
simplex TX or simplex RX core, perform the following steps:

1. Generate the core for simulation.

2. Generate a complimentary simplex core.Go to the scripts directory of the first core
generated.

3. Set the environment variable SIMPLEX_PARTNER to point to the directory for the
complementary core.

4. Run the script according to the instructions in the Virtex-5 GTP Aurora v2.8 Getting
Started Guide.

Note: The top level module name of the simplex design and simplex partner design should be
similar. For example, if the top level module name of the TX simplex design is simplex_201_tx, then
the top level module name of the simplex partner should be rx_simplex_201_tx.

http://www.xilinx.com

32 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 3: Customizing the Aurora Core

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 33
UG224 (v1.4) October 10, 2007

R

Chapter 4

User Interface

Introduction
An Aurora core can be generated with either a framing or streaming user data interface. In
addition, flow control options are available for designs with framing interfaces. See
Chapter 5, “Flow Control.”

The framing user interface complies with the LocalLink Interface Specification. It comprises
the signals necessary for transmitting and receiving framed user data. The streaming
interface allows users to send data without special frame delimiters. It is simple to operate
and uses fewer resources than framing.

Note: The user interface signals vary depending upon the selections made when generating an
Aurora core in the CORE Generator tool.

Figure 4-1: Top-Level User Interface

UG224_04_01_062606

TX Data

Control

Control

TXP/TXN

NFC Number of Idles

NFC Req

UFC TX Message Size

UFC TX Req

UFC TX Data

ClockingClock Module
-Chapter 7-

GTP Interface
-Chapter 6-

Clock Interface
-Chapter 7-

User Interface
-Chapter 4-

Aurora Module

Native Flow Control
(NFC) Interface

-Chapter 5-

User Flow Control
(UFC) Interface

-Chapter 5-

Do CC

Warn CCClock
Compensation

Module
-Chapter 8-

Clock
Compensation

-Chapter 8

Status

Status

RXP/RXN

RX Data

NFC Ack

UFC RX Data

UFC RX Status/Ctrl

UFC TX Ack

Clocking

http://www.xilinx.com

34 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 4: User Interface
R

Framing Interface
Figure 4-2 shows the framing user interface of the Aurora core, with LocalLink-compliant
ports for TX and RX data.

LocalLink TX Ports
The tables in this section list port descriptions for LocalLink TX data ports. These ports are
included on full-duplex, simplex TX, and simplex Both framing cores.

Figure 4-2: Aurora Core Framing Interface (LocalLink)

RX_D[0:(8n-1)]

RX_REM[0:r(n)]

RX_SOF_N

RX_EOF_N

RX_SRC_RDY_N

TX_D[0:(8n-1)]

TX_REM[0:r(n)]

TX_SOF_N

TX_EOF_N

TX_SRC_RDY_N

TX_DST_RDY_N

LocalLink
Interface
(LL I/F)

UG224_04_02_042606

Table 4-1: LocalLink User I/O Ports (TX)

Name Direction Description

TX_D[0:(8n-1)] Input Outgoing data (Ascending bit order).

TX_DST_RDY_N Output

Asserted (low) during clock edges when signals from the
source will be accepted (if TX_SRC_RDY_N is also
asserted).

Deasserted (high) on clock edges when signals from the
source will be ignored.

TX_EOF_N Input Signals the end of the frame (active-Low).

TX_REM[0:r(n)] Input
Specifies the number of valid bytes in the last data beat;
valid only while TX_EOF_N is asserted. REM bus widths
are given by [0:r(n)], where r(n) = ceiling [{log2(n)}-1].

TX_SOF_N Input
Signals the start of the outgoing channel frame (active-
Low).

TX_SRC_RDY_N Input

Asserted (low) when LocalLink signals from the source are
valid.

Deasserted (high) when LocalLink control signals and/or
data from the source should be ignored (active-Low).

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 35
UG224 (v1.4) October 10, 2007

Framing Interface
R

LocalLink RX Ports
The tables in this section list port descriptions for LocalLink RX data ports. These ports are
included on full-duplex, simplex RX, and simplex Both framing cores.

To transmit data, the user manipulates control signals to cause the core to do the following:

• Take data from the user on the TX_D bus

• Encapsulate and stripe the data across lanes in the Aurora channel (TX_SOF_N,
TX_EOF_N)

• Pause data (that is, insert idles) (TX_SRC_RDY_N)

When the core receives data, it does the following:

• Detects and discards control bytes (idles, clock compensation, SCP, ECP)

• Asserts framing signals (RX_SOF_N, RX_EOF_N)

• Recovers data from the lanes

• Assembles data for presentation to the user on the RX_D bus

LocalLink Bit Ordering
The LocalLink Interface Specification allows both ascending and descending bit ordering.
Aurora cores use ascending ordering. They transmit and receive the most significant bit of
the most significant byte first. Figure 4-3 shows the organization of an n-byte example of
the LocalLink data interfaces of an Aurora core.

Table 4-2: LocalLink User I/O Ports (RX)

Name Direction Description

RX_D[0:(8n-1)] Output Incoming data from channel partner (Ascending bit order).

RX_EOF_N Output
Signals the end of the incoming frame (active-Low, asserted
for a single user clock cycle).

RX_REM[0:r(n)] Output
Specifies the number of valid bytes in the last data beat;
valid only when RX_EOF_N is asserted. REM bus widths
are given by [0:r(n)], where r(n) = ceiling [{log2(n)}-1].

RX_SOF_N Output
Signals the start of the incoming frame (active-Low,
asserted for a single user clock cycle).

RX_SRC_RDY_N Output

Asserted (low) when data and control signals from an
Aurora core are valid.

Deasserted (high) when data and/or control signals from
an Aurora core should be ignored (active-Low).

Figure 4-3: LocalLink Interface Bit Ordering

Most significant bit transmitted first Least significant bit transmitted last

Byte 0 Byte 1 Byte n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n0 n2 n3 n4 n5 n6 n7n1TX_D

Most Significant Byte Least Significant Byte

UG224_04_03_062706

http://www.xilinx.com

36 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 4: User Interface
R

Transmitting Data
LocalLink is a synchronous interface. The Aurora core samples the data on the interface
only on the positive edge of USER_CLK, and only on the cycles when both
TX_DST_RDY_N and TX_SRC_RDY_N are asserted (low).

When LocalLink signals are sampled, they are only considered valid if TX_SRC_RDY_N is
asserted. The user application can deassert TX_SRC_RDY_N on any clock cycle; this will
cause Aurora to ignore the LocalLink input for that cycle. If this occurs in the middle of a
frame, idle symbols are sent through the Aurora channel, which eventually result in a idle
cycles during the frame when it is received at the RX user interface.

LocalLink data is only valid when it is framed. Data outside of a frame is ignored. To start
a frame, assert TX_SOF_N while the first word of data is on the TX_D port. To end a frame,
assert TX_EOF_N while the last word (or partial word) of data is on the TX_D port. Note
that in the case of frames that are a single word long or less, TX_SOF_N and TX_EOF_N are
asserted simultaneously.

Data Remainder

LocalLink allows the last word of a frame to be a partial word. This lets a frame contain any
number of bytes, regardless of the word size. The TX_REM bus is used to indicate the
number of valid bytes in the final word of the frame. The bus is only used when
TX_EOF_N is asserted. Aurora uses encoded REM values. REM is the binary encoding of
the number of valid bytes minus 1. A zero REM value indicates the left-most byte in the
TX_D port (the MSB) is the only valid byte in the word. Table 4-3 shows the mapping
between TX_REM values and valid byte counts for the TX_D port.

Aurora Frames

The TX_LL submodule translates each user frame that it receives through the TX interface
to an Aurora frame. The 2-byte SCP code group is added to the beginning of the frame data
to indicate the start of frame, and a 2-byte ECP set is sent after the frame ends to indicate
the end of frame. Idle code groups are inserted whenever data is not available. Code
groups are 8B/10B encoded byte pairs. All data in Aurora is sent as code groups, so user
frames with an odd number of bytes have a control character called PAD appended to the
end of the frame to fill out the final code group. Table 4-4 shows a typical Aurora frame
with an even number of data bytes.

Table 4-3: TX Data Remainder Values

TX_REM Value Number of Valid Bytes

0 1

1 2

2 3

3 4

.

.

.

.

.

.

n n+1

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 37
UG224 (v1.4) October 10, 2007

Framing Interface
R

Length

The user controls the channel frame length by manipulation of the TX_SOF_N and
TX_EOF_N signals. The Aurora core responds with start-of-frame and end-of-frame
ordered sets, /SCP/ and /ECP/ respectively, as shown in Table 4-4.

Example A: Simple Data Transfer

Figure 4-4 shows an example of a simple data transfer on a LocalLink interface that is
n-bytes wide. In this case, the amount of data being sent is 3n bytes and so requires three
data beats. TX_DST_RDY_N is asserted, indicating that the LocalLink interface is already
ready to transmit data. When the Aurora core is not sending data, it sends idle sequences.

To begin the data transfer, the user asserts the TX_SOF_N concurrently with
TX_SRC_RDY_N and the first n bytes of the user frame. Since TX_DST_RDY_N is already
asserted, data transfer begins on the next clock edge. An /SCP/ ordered set is placed on
the first two bytes of the channel to indicate the start of the frame. Then the first n-2 data
bytes are placed on the channel. Because of the offset required for the /SCP/, the last two
bytes in each data beat are always delayed one cycle and transmitted on the first two bytes
of the next beat of the channel.

To end the data transfer, the user asserts TX_EOF_N, TX_SRC_RDY_N, the last data bytes,
and the appropriate value on the TX_REM bus. In this example, TX_REM is set to n-1 to
indicate that all bytes are valid in the last data beat. One clock cycle after TX_EOF_N is
asserted, the LocalLink interface deasserts TX_DST_RDY_N and uses the gap in the data
flow to send the final offset data bytes and the /ECP/ ordered set, indicating the end of the
frame. TX_DST_RDY_N is reasserted on the next cycle so that more data transfers can
continue. As long as there is no new data, the Aurora core sends idles.

Table 4-4: Typical Channel Frame

/SCP/1 /SCP/2
Data Byte

0
Data Byte

1
Data Byte

2
. . .

Data Byte
n -1

Data Byte
n

/ECP/1 /ECP/2

Figure 4-4: Simple Data Transfer

USER_CLK

TX_SOF_N

TX_REM[0:r(n)]

TX_EOF_N

TX_SRC_RDY_N

TX_DST_RDY_N

TX_D[0:(8n-1)]

n-1TX
LocalLink

I/F

Data Beat 0 Data Beat 1 Data Beat 2

X

X

X

X

UG224_04_04_062706

http://www.xilinx.com

38 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 4: User Interface
R

Example B: Data Transfer with Pad

Figure 4-5 shows an example of a (3n-1)-byte data transfer that requires the use of a pad.
Since there is an odd number of data bytes, the Aurora core appends a pad character at the
end of the Aurora frame, as required by the protocol. A transfer of 3n-1 data bytes requires
two full n-byte data words and one partial data word. In this example, TX_REM is set to
n-2 to indicate n-1 valid bytes in the last data word.

Example C: Data Transfer with Pause

Figure 4-6 shows how a user can pause data transmission during a frame transfer. In this
example, the user is sending 3n bytes of data, and pauses the data flow after the first
n bytes. After the first data word, the user deasserts TX_SRC_RDY_N, causing the TX
Aurora core to ignore all data on the bus and transmit idles instead. The offset data from
the first data word in the previous cycle still is transmitted on lane 0, but the next data
word is replaced by idle characters. The pause continues until TX_SRC_RDY_N is
deasserted.

Figure 4-5: Data Transfer with Pad

USER_CLK

TX_SOF_N

TX_REM[0:r(n)]

TX_EOF_N

TX_SRC_RDY_N

TX_DST_RDY_N

TX_D[0:(8n-1)]

n-2X X

XX

TX
LocalLink

I/F

Data Beat 0 Data Beat 1 Data Beat 2

UG224_04_05_062706

Figure 4-6: Data Transfer with Pause

USER_CLK

TX_SOF_N

TX_REM[0:r(n)]

TX_EOF_N

TX_SRC_RDY_N

TX_DST_RDY_N

TX_D[0:(8n-1)]

Pause

X

X X X

n-1TX
LocalLink

I/F

UG224_04_06_062706

Data Beat 0 Data Beat 1 Data Beat 2

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 39
UG224 (v1.4) October 10, 2007

Framing Interface
R

Example D: Data Transfer with Clock Compensation

The Aurora core automatically interrupts data transmission when it sends clock
compensation sequences. The clock compensation sequence imposes 12 bytes of overhead
per lane every 10,000 bytes.

Figure 4-7 shows how the Aurora core pauses data transmission during the clock
compensation(1) sequence.

1. Because of the need for clock compensation every 10,000 bytes per lane (5,000 clocks for 2-byte per lane
designs; 2,500 clocks for 4-byte per lane designs), a user cannot continuously transmit data nor can data be
continuously received. During clock compensation, data transfer is suspended for six clock periods.

Figure 4-7: Data Transfer Paused by Clock Compensation

USER_CLK

TX_SOF_N

TX_REM[0:r(n)]

TX_EOF_N

TX_SRC_RDY_N

TX_DST_RDY_N

TX_D[0:(8n-1)]

Clock Compensation (CC)

TX
LocalLink

I/F

Data Beat 0 Data Beat 1 Data Beat 2 Data Beat 3 Data Beat 4

X

UG224_04_07_062706

http://www.xilinx.com

40 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 4: User Interface
R

TX Interface Example

This section illustrates a simple example of how a user might design an interface between
the user’s transmit FIFO and the LocalLink interface of an Aurora core.

To review, in order to transmit data, the user asserts TX_SOF_N and TX_SRC_RDY_N.
TX_DST_RDY_N indicates that the data on the TX_D bus will be transmitted on the next
rising edge of the clock, assuming TX_SRC_RDY_N remains asserted.

Figure 4-8 is a diagram of a typical connection between an Aurora core and the user's data
source (in this example, a FIFO), including the simple logic needed to generate TX_SOF_N,
TX_SRC_RDY_N, and TX_EOF_N from typical FIFO buffer status signals. While RESET is
false, the example application waits for a FIFO to fill and then it generates the TX_SOF_N
and TX_SRC_RDY_N signals. These two signals cause the Aurora core to start reading the
FIFO by asserting the TX_DST_RDY_N signal.

The Aurora core encapsulates the FIFO data and transmits it until the FIFO is empty. At
this point, the example application tells the Aurora core to end the transmission using the
TX_EOF_N signal.

Figure 4-8: Transmitting Data

RE

Q

TX_SRC_RDY_N

TX_SOF_N

To/From
Aurora Module

TX_D

FULL

EMPTY

User
TX FIFO

TX_EOF_N

D Q

REMPTY

S0
S1

FULL

RESET

S0

D Q

REMPTY

S0
S1

FULL

RESET

S1

TX_DST_RDY_N

FULL

FULL

S0

S0
S1

EMPTY

S1
EMPTY

UG224_04_08_062706

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 41
UG224 (v1.4) October 10, 2007

Framing Interface
R

Receiving Data
When the Aurora core receives an Aurora frame, it presents it to the user through the RX
LocalLink interface after discarding the framing characters, idles, and clock compensation
sequences.

The RX_LL submodule has no built in elastic buffer for user data. As a result, there is no
RX_DST_RDY_N signal on the RX LocalLink interface. The only way for the user
application to control the flow of data from an Aurora channel is to use one of the core’s
optional flow control features. In most cases, a FIFO should be added to the RX data path
to ensure no data is lost while flow control messages are in transit.

The Aurora core asserts the RX_SRC_RDY_N signal when the signals on its RX LocalLink
interface are valid. Applications should ignore any values on the RX LocalLink ports
sampled while RX_SRC_RDY_N is deasserted (high).

RX_SOF_N is asserted concurrently with the first word of each frame from the Aurora
core. RX_EOF_N is asserted concurrently with the last word or partial word of each frame.
The RX_REM port indicates the number of valid bytes in the final word of each frame. It
uses the same encoding as TX_REM and is only valid when RX_EOF_N is asserted.

The Aurora core can deassert RX_SRC_RDY_N anytime, even during a frame. The timing
of the RX_SRC_RDY_N deassertions is independent of the way the data was transmitted.
The core can occasionally deassert RX_SRC_RDY_N even if the frame was originally
transmitted without pauses. These pauses are a result of the framing character stripping
and left alignment process, as the core attempts to process each frame with as little latency
as possible.

“Example A: Data Reception with Pause” shows the reception of a typical Aurora frame.

Example A: Data Reception with Pause

Figure 4-9 shows an example of 3n bytes of received data interrupted by a pause. Data is
presented on the RX_D bus. When the first n bytes are placed on the bus, the RX_SOF_N
and RX_SRC_RDY_N outputs are asserted to indicate that data is ready for the user. On
the clock cycle following the first data beat, the core deasserts RX_SRC_RDY_N, indicating
to the user that there is a pause in the data flow.

After the pause, the core asserts RX_SRC_RDY_N and continues to assemble the
remaining data on the RX_D bus. At the end of the frame, the core asserts RX_EOF_N. The
core also computes the value of RX_REM bus and presents it to the user based on the total
number of valid bytes in the final word of the frame.

Figure 4-9: Data Reception with Pause

USER_CLK

RX_SOF_N

RX_REM[0:r(n)]

RX_EOF_N

RX_SRC_RDY_N

RX_D[0:(8n-1)]

Pause

X

X X

X

X

RX
LocalLink

I/F

Data Beat 0 Data Beat 1 Data Beat 2

n-1

UG224_04_09_062706

http://www.xilinx.com

42 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 4: User Interface
R

RX Interface Example

Figure 4-10 is a simple example of how a user might design an interface between the
LocalLink interface of an Aurora core and a FIFO. To receive data, the user monitors the
RX_SRC_RDY_N signal. When valid data is present on the RX_D port, RX_SRC_RDY_N is
asserted. Because the inverse of RX_SRC_RDY_N is connected to the FIFO’s WE port, the
data and framing signals and REM value are written to the FIFO.

Framing Efficiency
There are two factors that affect framing efficiency in the Aurora core:

• Size of the frame

• Width of the data path

The CC sequence, which uses 12 bytes on every lane every 10,000 bytes, consumes about
0.12 percent of the total channel bandwidth.

All bytes in Aurora are sent in 2-byte code groups. Aurora frames with an even number of
bytes have 4 bytes of overhead, 2 bytes for SCP (start of frame) and 2 bytes for ECP (end of
frame). Aurora frames with an odd number of bytes have 5 bytes of overhead, 4 bytes of
framing overhead plus an additional byte for the pad byte that is sent to fill the second byte
of the code group carrying the last byte of data in the frame.

Like many parallel interfaces, LocalLink processes data from only one frame at a time. The
core must drop data when it arrives on the GTP transceiver interface at the same time as
data from a previous cycle. The LocalLink Interface Specification includes advanced options
for handling multiple frames on a single cycle, but these options are not implemented in
this core.

Figure 4-10: Receiving Data

User
RX FIFO

RX_D

RX_REM

RX_SOF_N

RX_EOF_N

RX_SRC_RDY_N

D

D

D

D

WE

 Signals From
Aurora Module

UG224_04_10_062706

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 43
UG224 (v1.4) October 10, 2007

Framing Interface
R

The core transmits frame delimiters only in specific lanes of the channel. SCP is only
transmitted in the left-most (most-significant) lane, and ECP is only transmitted in the
right-most (least-significant) lane. Any space in the channel between the last code group
with data and the ECP code group is padded with idles. The result is reduced resource cost
for the design, at the expense of a minimal additional throughput cost. Though SCP and
ECP could be optimized for additional throughput, the single frame per cycle limitation
imposed by the user interface would make this improvement unusable in most cases.

Use the formula shown in Figure 4-11 to calculate the efficiency for a design of any number
of lanes, any width of interface, and frames of any number of bytes. Note that this formula
includes the overhead for clock compensation.

Example

Table 4-5 is an example calculated from the formula given in Figure 4-11. It shows the
efficiency for an 8-byte, 4-lane channel and illustrates that the efficiency increases as the
length of channel frames increases.

Figure 4-11: Formula for Calculating Overhead

n = Number of user data bytes
E = The average efficiency of a specified PDU

12n/9,988 = Clock correction overhead
4 = The overhead of SCP + ECP

0.5 = Average PAD overhead
IDLEs = The overhead for IDLEs = (w/2)-1

(w = The interface width)

12n
9,988

E =
100n

n + 4 + 0.5 + IDLEs +

Where:

UG224_04_11_062806

Table 4-5: Efficiency Example

User Data Bytes Efficiency %

100 92.92

1,000 99.14

10,000 99.81

http://www.xilinx.com

44 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 4: User Interface
R

Table 4-6 shows the overhead in an 8-byte, 4-lane channel when transmitting 256 bytes of
frame data across the four lanes. The resulting data unit is 264 bytes long due to start and
end characters, and due to the idles necessary to fill out the lanes. This amounts to 3.03
percent of overhead in the transmitter. In addition, a 12-byte clock compensation sequence
occurs on each lane every 10,000 bytes, which adds a small amount more to the overhead.
The receiver can handle a slightly more efficient data stream because it does not require
any idle pattern.

Table 4-7 shows the overhead that occurs with each value of TX_REM.

Table 4-6: Typical Overhead for Transmitting 256 Data Bytes

Lane Clock Function
Character or Data Byte

Byte 1 Byte 2

0 1 Start of channel frame /SCP/1 /SCP/2

1 1 Channel frame data D0 D1

2 1 Channel frame data D2 D3

3 1 Channel frame data D4 D5

.

.

.

0 33 Channel frame data D254 D255

1 33 Transmit idles /I/ /I/

2 33 Transmit idles /I/ /I/

3 33 End of channel frame /ECP/1 /ECP/2

Table 4-7: TX_REM Value and Corresponding Bytes of Overhead

TX_REM Bus Value SCP Pad ECP Idles Total

0

2

1

2

6
11

1 0 10

2 1
4

9

3 0 8

4 1
2

7

5 0 6

6 1
0

5

7 0 4

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 45
UG224 (v1.4) October 10, 2007

Streaming Interface
R

Streaming Interface
Figure 4-12 shows an example of an Aurora core configured with a streaming user
interface.

Streaming TX Ports
Table 4-8 lists the streaming TX data ports. These ports are included on full-duplex,
simplex TX, and simplex Both framing cores.

Streaming RX Ports
Table 4-9 lists the streaming RX data ports. These ports are included on full-duplex,
simplex RX, and simplex Both framing cores.

Figure 4-12: Aurora Core Streaming User Interface

RX_D

RX_SRC_RDY_N

TX_D

TX_SRC_RDY_N
Streaming
Interface

TX_DST_RDY_N

Aurora Module

UG224_04_12_062706

Table 4-8: Streaming User I/O Ports (TX)

Name Direction Description

TX_D[0:(8n-1)] Input Outgoing data (Ascending bit order).

TX_DST_RDY_N Output

Asserted (low) during clock edges when signals from the
source will be accepted (if TX_SRC_RDY_N is also
asserted).

Deasserted (high) on clock edges when signals from the
source will be ignored.

TX_SRC_RDY_N Input

Asserted (low) when LocalLink signals from the source are
valid.

Deasserted (high) when LocalLink control signals and/or
data from the source should be ignored (active-Low).

Table 4-9: Streaming User I/O Ports (RX)

Name Direction Description

RX_D[0:(8n-1)] Output Incoming data from channel partner (Ascending bit order).

RX_SRC_RDY_N Output

Asserted (low) when data and control signals from an
Aurora core are valid.

Deasserted (high) when data and/or control signals from
an Aurora core should be ignored (active-Low).

http://www.xilinx.com

46 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 4: User Interface
R

Transmitting and Receiving Data
The streaming interface allows the Aurora channel to be used as a pipe. Words written into
the TX side of the channel are delivered, in order after some latency, to the RX side. After
initialization, the channel is always available for writing, except when the DO_CC signal is
asserted to send clock compensation sequences. Applications transmit data through the
TX_D port, and use the TX_SRC_RDY_N port to indicate when the data is valid (asserted
low). The Aurora core will deassert TX_DST_RDY_N (high) when the channel is not ready
to receive data. Otherwise, TX_DST_RDY_N will remain asserted.

When TX_SRC_RDY_N is deasserted, gaps are created between words. These gaps are
preserved, except when clock compensation sequences are being transmitted. Clock
compensation sequences are replicated or deleted by the GTP transceiver to make up for
frequency differences between the two sides of the Aurora channel. As a result, gaps
created when DO_CC is asserted can shrink and grow. For details on the DO_CC signal,
see Chapter 8, “Clock Compensation.”

When data arrives at the RX side of the Aurora channel it is presented on the RX_D bus and
RX_SRC_RDY is asserted. The data must be read immediately or it will be lost. If this is
unacceptable, a buffer must be connected to the RX interface to hold the data until it can be
used.

Figure 4-13 shows a typical example of streaming data. The example begins with neither of
the ready signals asserted, indicating that both the user logic and the Aurora core are not
ready to transfer data. During the next clock cycle, the Aurora core indicates that it is ready
to transfer data by asserting TX_DST_RDY_N. One cycle later, the user logic indicates that
it is ready to transfer data by asserting the TX_D bus and the TX_SRC_RDY_N signal.
Because both ready signals are now asserted, data D0 is transferred from the user logic to
the Aurora core. Data D1 is transferred on the following clock cycle. In this example, the
Aurora core deasserts its ready signal, TX_DST_RDY_N, and no data is transferred until
the next clock cycle when, once again, the TX_DST_RDY_N signal is asserted. Then the
user deasserts TX_SRC_RDY_N on the next clock cycle, and no data is transferred until
both ready signals are asserted.

Figure 4-14 shows the receiving end of the data transfer that is shown in Figure 4-13.

Figure 4-13: Typical Streaming Data Transfer

USER_CLK

TX_SRC_RDY_N

TX_DST_RDY_N

TX_D[0:(8n-1)]

DO_CC

X D1D0 D2 X D3

UG224_04_13_062706

Figure 4-14: Typical Data Reception

USER_CLK

RX_SRC_RDY_N

RX_D[0:(8n-1)] X D1D0 X X D3 D4D2

UG224_04_14_062706

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 47
UG224 (v1.4) October 10, 2007

R

Chapter 5

Flow Control

Introduction
This chapter explains how to use Aurora flow control. Two flow control interfaces are
available as options on cores that use a framing interface. Native flow control (NFC) is used
for regulating the data transmission rate at the receiving end a full-duplex channel. User
flow control (UFC) is used to accommodate high priority messages for control operations.

Figure 5-1: Top-Level Flow Control

UG224_05_01_062606

TX Data

Control

Control

TXP/TXN

NFC Number of Idles

NFC Req

UFC TX Message Size

UFC TX Req

UFC TX Data

ClockingClock Module
-Chapter 7-

GTP Interface
-Chapter 6-

Clock Interface
-Chapter 7-

User Interface
-Chapter 4-

Aurora Module

Native Flow Control
(NFC) Interface

-Chapter 5-

User Flow Control
(UFC) Interface

-Chapter 5-

Do CC

Warn CCClock
Compensation

Module
-Chapter 8-

Clock
Compensation

-Chapter 8-

Status

Status

RXP/RXN

RX Data

NFC Ack

UFC RX Data

UFC RX Status/Ctrl

UFC TX Ack

Clocking

http://www.xilinx.com

48 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 5: Flow Control
R

Native Flow Control
Table 5-1 shows the codes for native flow control (NFC).

Table 5-2 lists the ports for the NFC interface available only in full-duplex Aurora cores.

The Aurora protocol includes native flow control (NFC) to allow receivers to control the
rate at which data is sent to them by specifying a number of idle data beats that must be
placed into the data stream. The data flow can even be turned off completely by requesting
that the transmitter temporarily send only idles (XOFF). NFC is typically used to prevent
FIFO overflow conditions. For detailed explanation of NFC operation and NFC codes, see
the Aurora Protocol Specification.

To send an NFC message to a channel partner, the user application asserts NFC_REQ_N
and writes an NFC code to NFC_NB. The NFC code indicates the minimum number of idle
cycles the channel partner should insert in its TX data stream. The user application must
hold NFC_REQ_N and NFC_NB until NFC_ACK_N is asserted on a positive USER_CLK
edge, indicating the Aurora core will transmit the NFC message. Aurora cores cannot
transmit data while sending NFC messages. TX_DST_RDY_N is always deasserted on the
cycle following an NFC_ACK_N assertion.

Table 5-1: NFC Codes

NFC_NB Idle Cycles Requested

0000 0 (XON)

0001 2

0010 4

0011 8

0100 16

0101 32

0110 64

0111 128

1000 256

1001 to 1110 Reserved

1111 Infinite (XOFF)

Table 5-2: NFC I/O Ports

Name Direction Description

NFC_ACK_N Output
Asserted when an Aurora core accepts an NFC request (active-
Low).

NFC_NB[0:3] Input
Indicates the number of PAUSE idles the channel partner must
send when it receives the NFC message. Must be held until
NFC_ACK_N is asserted.

NFC_REQ_N Input
Asserted to request an NFC message be sent to the channel
partner (active-Low). Must be held until NFC_ACK_N is
asserted.

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 49
UG224 (v1.4) October 10, 2007

Native Flow Control
R

Example A: Transmitting an NFC Message
Figure 5-2 shows an example of the transmit timing when the user sends an NFC message
to a channel partner. Note that TX_DST_RDY_N is deasserted for one cycle(1) to create the
gap in the data flow in which the NFC message is placed.

Example B: Receiving a Message with NFC Idles Inserted
Figure 5-3 shows an example of the signals on the TX user interface when an NFC message
is received. In this case, the NFC message has a code of 0001, requesting two data beats of
Idles. The core deasserts TX_DST_RDY_N on the user interface until enough Idles have
been sent to satisfy the request. In this example, the core is operating in Immediate NFC
mode. Aurora cores can also operate in Completion mode, where NFC Idles are only
inserted between frames. If a completion mode core receives an NFC message while it is
transmitting a frame, it finishes transmitting the frame before deasserting
TX_DST_RDY_N to insert idles.

1. Assumes that n is at least 2.

Figure 5-2: Transmitting an NFC Message

USER_CLK

TX_SOF_N

TX_REM[0:r(n)]

TX_EOF_N

TX_SRC_RDY_N

TX_DST_RDY_N

TX_D[0:(8n-1)]

NFC_REQ_N

NFC_ACK_N

NFC_NB[0:3]

Native
Flow

Control

TX
LocalLink

I/F X X X X X X X

X X X X X4

Data Beat w ... w+1

NFC is sent here

... w+2 ... w+3 ... w+4

UG224_05_02_062706

Figure 5-3: Transmitting a Message with NFC Idles Inserted

USER_CLK

TX_SOF_N

TX_REM[0:r(n)]

TX_EOF_N

TX_SRC_RDY_N

TX_DST_RDY_N

TX_D[0:(8n-1)]

TX
LocalLink

I/F

Data Beat w ... w+1 ... w+2 ... w+3 ... w+4

X X X X X

X X

X X

UG224_05_03_062706

http://www.xilinx.com

50 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 5: Flow Control
R

User Flow Control
The Aurora protocol includes user flow control (UFC) to allow channel partners to send
control information using a separate in-band channel. The user can send short UFC
messages to the core's channel partner without waiting for the end of a frame in progress.
The UFC message shares the channel with regular frame data, but has a higher priority.

Table 5-3 describes the ports for the UFC interface.

Table 5-3: UFC I/O Ports

Name Direction Description

UFC_TX_REQ_N Input

Asserted to request a UFC message be sent to the channel partner (active-
Low). Must be held until UFC_TX_ACK_N is asserted. Do not assert this
signal unless the entire UFC message is ready to be sent; a UFC message
cannot be interrupted once it has started.

UFC_TX_MS[0:2] Input
Specifies the size of the UFC message that will be sent. The SIZE encoding
is a value between 0 and 7. See Table 5-4, page 51.

UFC_TX_ACK_N Output

Asserted when an Aurora core is ready to read the contents of the UFC
message (active-Low). On the cycle after the ACK signal is asserted, data
on the TX_D port will be treated as UFC data. TX_D data continues to be
used to fill the UFC message until enough cycles have passed to send the
complete message. Unused bytes from a UFC cycle are discarded.

UFC_RX_DATA[0:(8n-1)] Output
Incoming UFC message data from the channel partner
(n = 16 bytes max).

UFC_RX_SRC_RDY_N Output
Asserted when the values on the UFC_RX ports are valid. When this signal
is not asserted, all values on the UFC_RX ports should be ignored (active-
Low).

UFC_RX_SOF_N Output Signals the start of the incoming UFC message (active-Low).

UFC_RX_EOF_N Output Signals the end of the incoming UFC message (active-Low).

UFC_RX_REM[0:r(n)] Output

Specifies the number of valid bytes of data presented on the
UFC_RX_DATA port on the last word of a UFC message. Valid only when
UFC_RX_EOF_N is asserted. n = 16 bytes max. REM bus widths are given
by [0:r(n)], where r(n) = ceiling [{log2(n)}-1].

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 51
UG224 (v1.4) October 10, 2007

User Flow Control
R

Transmitting UFC Messages
UFC messages can carry an even number of data bytes from 2 to 16. The user application
specifies the length of the message by driving a SIZE code on the UFC_TX_MS port.
Table 5-4 shows the legal SIZE code values for UFC.

To send a UFC message, the user application asserts UFC_TX_REQ_N while driving the
UFC_TX_MS port with the desired SIZE code. UFC_TX_REQ_N must be held until the
Aurora core asserts the UFC_TX_ACK_N signal, indicating that the core is ready to send
the UFC message. The data for the UFC message must be placed on the TX_D port of the
data interface, starting on the first cycle after UFC_TX_ACK_N is asserted. The core
deasserts TX_DST_RDY_N while the TX_D port is being used for UFC data.

Figure 5-4 shows a useful circuit for switching TX_D from sending regular data to UFC
data.

Table 5-5, page 52 shows the number of cycles required to transmit UFC messages of
different sizes based on the width of the LocalLink data interface. UFC messages should
never be started until all message data is available. Unlike regular data, UFC messages
cannot be interrupted after UFC_TX_ACK_N has been asserted.

Table 5-4: SIZE Encoding

SIZE Field Contents UFC Message Size

000 2 bytes

001 4 bytes

010 6 bytes

011 8 bytes

100 10 bytes

101 12 bytes

110 14 bytes

111 16 bytes

Figure 5-4: Data Switching Circuit

Regular Data

UFC Data

TX_DST_RDY_N

TX_D

0

1

UFC Interface

Data Interface

Aurora Core

UG224_05_04_062706

http://www.xilinx.com

52 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 5: Flow Control
R

Table 5-5: Number of Data Beats Required to Transmit UFC Messages

UFC Message
UFC_TX_MS

Value
LL I/F
Width

Number of
Data Beats

LL I/F
Width

Number of
Data Beats

2 Bytes 0

2 Bytes

1

10 Bytes

1

4 Bytes 1 2

6 Bytes 2 3

8 Bytes 3 4

10 Bytes 4 5

12 Bytes 5 6

214 Bytes 6 7

16 Bytes 7 8

2 Bytes 0

4 Bytes

1

12 Bytes

1

4 Bytes 1

6 Bytes 2
2

8 Bytes 3

10 Bytes 4
3

12 Bytes 5

14 Bytes 6
4 2

16 Bytes 7

2 Bytes 0

6 Bytes

1

14 Bytes
1

4 Bytes 1

6 Bytes 2

8 Bytes 3

210 Bytes 4

12 Bytes 5

14 Bytes 6
3

16 Bytes 7 2

2 Bytes 0

8 Bytes

1

16 Bytes
or more

1

4 Bytes 1

6 Bytes 2

8 Bytes 3

10 Bytes 4

2
12 Bytes 5

14 Bytes 6

16 Bytes 7

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 53
UG224 (v1.4) October 10, 2007

User Flow Control
R

Example A: Transmitting a Single-Cycle UFC Message

The procedure for transmitting a single cycle UFC message is shown in Figure 5-5. In this
case a 4-byte message is being sent on an 8-byte interface. Note that TX_DST_RDY_N is
deasserted for two cycles. Aurora cores use this gap in the data flow to transmit the UFC
header and message data.

Example B: Transmitting a Multi-Cycle UFC Message

The procedure for transmitting a two-cycle UCF message is shown in Figure 5-6. In this
case the user application is sending a 16-byte message using an 8-byte interface.
TX_DST_RDY_N is asserted for three cycles; one cycle for the UFC header which is sent
during the UFC_TX_ACK_N cycle, and two cycles for data.

Figure 5-5: Transmitting a Single-Cycle UFC Message

USER_CLK

UFC_TX_REQ_N

UFC_TX_MS[0:2]

UFC_TX_ACK_N

TX_DST_RDY_N

TX_D[0:(8n-1)] Data Data Data Data Data

3X X X

X UFC

X X3

UG224_05_05_062706

Figure 5-6: Transmitting a Multi-Cycle UFC Message

USER_CLK

UFC_TX_REQ_N

UFC_TX_MS[0:2]

UFC_TX_ACK_N

TX_DST_RDY_N

TX_D[0:(8n-1)]

7X X X

X UFC UFC

X X7

Data Beat w ... w+1 ... w+2 ... w+3

UG224_05_06_062706

http://www.xilinx.com

54 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 5: Flow Control
R

Receiving User Flow Control Messages
When the Aurora core receives a UFC message, it passes the data from the message to the
user application through a dedicated UFC LocalLink interface. The data is presented on
the UFC_RX_DATA port; UFC_RX_SOF_N indicates the start of the message data and
UFC_EX_EOF_N indicates the end. UFC_RX_REM is used to show the number of valid
bytes on UFC_RX_DATA during the last cycle of the message (for example, while
UFC_RX_EOF_N is asserted). Signals on the UFC_RX LocalLink interface are only valid
when UFC_RX_SRC_RDY_N is asserted.

Example C: Receiving a Single-Cycle UFC Message

Figure 5-7 shows an Aurora core with an 8-byte data interface receiving a 4-byte UFC
message. The core presents this data to the user application by asserting
UFC_RX_SRC_RDY_N, UFC_RX_SOF_N and UFC_RX_EOF_N to indicate a single cycle
frame. The UFC_RX_REM bus is set to 3, indicating only the four most significant bytes of
the interface are valid.

Example D: Receiving a Multi-Cycle UFC Message
Figure 5-8 shows an Aurora core with an 8-byte interface receiving a 16-byte message.
Note that the resulting frame is two cycles long, with UFC_RX_REM set to 7 on the second
cycle indicating that all 8 bytes of the data are valid.

Figure 5-7: Receiving a Single-Cycle UFC Message

USER_CLK

UFC_RX_SRC_RDY_N

UFC_RX_EOF_N

UFC_RX_SOF_N

UFC_RX_REM[0:r(n)]

UFC_RX_DATA[0:(8n-1)]

3X

X

X

X

X

X

X

UFC

X

X X

UG224_05_07_062706

Figure 5-8: Receiving a Multi-Cycle UFC Message

USER_CLK

UFC_RX_SRC_RDY_N

UFC_RX_EOF_N

UFC_RX_SOF_N

UFC_RX_REM[0:r(n)]

UFC_RX_DATA[0:(8n-1)]

7X

X

X

X

XX

UFC UFC

X

X X

USER_CLK

UFC_RX_SRC_RDY_N

UFC_RX_EOF_N

UFC_RX_SOF_N

7X

X

X

X

XX

UFC UFC

X

X

UG224_05_08_062706

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 55
UG224 (v1.4) October 10, 2007

R

Chapter 6

Status, Control, and the GTP Block Interface

Introduction
The status and control ports of the Aurora core allow user applications to monitor the
Aurora channel and use built-in features of the GTP transceivers.

Aurora cores can be configured as full-duplex or simplex modules. Full-duplex modules
provide high-speed TX and RX links. Simplex modules provide a link in only one direction
and are initialized using sideband ports.

This chapter provides diagrams and port descriptions for the Aurora core’s status and
control interface, along with the GTP transceiver serial I/O interface and the sideband
initialization ports that are used exclusively for simplex modules.

Figure 6-1: Top-Level GTP Block Interface

TX Data

Control

Control

TXP/TXN

NFC Number of Idles

NFC Req

UFC TX Message Size

UFC TX Req

UFC TX Data

ClockingClock Module
-Chapter 7-

GTP Interface
-Chapter 6-

Clock Interface
-Chapter 7-

User Interface
-Chapter 4-

Aurora Module

Native Flow Control
(NFC) Interface

-Chapter 5-

User Flow Control
(UFC) Interface

-Chapter 5-

Do CC

Warn CCClock
Compensation

Module
-Chapter 8-

Clock
Compensation

-Chapter 8-

Status

Status

RXP/RXN

RX Data

NFC Ack

UFC RX Data

UFC RX Status/Ctrl

UFC TX Ack

Clocking

UG224_06_01_062606

TX Data

Control

Control

TXP/TXN

NFC Number of Idles

NFC Req

UFC TX Message Size

UFC TX Req

UFC TX Data

ClockingClock Module
-Chapter 7-

GTP Interface
-Chapter 6-

Clock Interface
-Chapter 7-

User Interface
-Chapter 4-

Aurora Module

Native Flow Control
(NFC) Interface

-Chapter 5-

User Flow Control
(UFC) Interface

-Chapter 5-

Do CC

Warn CCClock
Compensation

Module
-Chapter 8-

Clock
Compensation

-Chapter 8-

Status

Status

RXP/RXN

RX Data

NFC Ack

UFC RX Data

UFC RX Status/Ctrl

UFC TX Ack

Clocking

http://www.xilinx.com

56 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 6: Status, Control, and the GTP Block Interface
R

Full-Duplex Cores

Full-Duplex Status and Control Ports
Full-duplex cores provide a TX and an RX Aurora channel connection. Figure 6-2 shows
the status and control interface for a full-duplex Aurora core. Table 6-1 describes the
function of each of the ports in the interface.

Figure 6-2: Status and Control Interface for Full-Duplex Cores

Table 6-1: Status and Control Ports for Full-Duplex Cores

Name Direction Description

CHANNEL_UP Output
Asserted when Aurora channel initialization is complete
and channel is ready to send data. The Aurora core can
receive data before CHANNEL_UP.

LANE_UP[0:m-1] Output

Asserted for each lane upon successful lane initialization,
with each bit representing one lane (active-High). The
Aurora core can only receive data after all LANE_UP
signals are high.

FRAME_ERROR Output Channel frame/protocol error detected. This port is active-
High and is asserted for a single clock.

HARD_ERROR Output
Hard error detected. (Active-High, asserted until Aurora
core resets). See “Error Signals in Full-Duplex Cores,” page
57 for more details.

LOOPBACK[0]
LOOPBACK[1]

Input
Refer to the Virtex-5 RocketIO GTP Transceiver User Guide for
details about loopback. See “Related Xilinx Documents” in
Chapter 1.

POWER_DOWN Input
Drives the powerdown input of the GTP transceiver
(active-High).

RESET Input
Resets the Aurora core (active-High). This signal must be
synchronous to USER_CLK and must be asserted for at
least one USER_CLK cycle.

SOFT_ERROR Output
Soft error detected in the incoming serial stream. See “Error
Signals in Full-Duplex Cores,” page 57 for more details.
(Active-High, asserted for a single clock).

RXP[0:m-1] Input Positive differential serial data input pin.

RXN[0:m-1] Input Negative differential serial data input pin.

HARD_ERROR

SOFT_ERROR

FRAME_ERROR

LANE_UP[0:m-1]

CHANNEL_UP

LOOPBACK[1:0]

POWER_DOWN

RESET Full-Duplex
Status and

Control
Interface

TXP

TXN

RXP

RXN
UG224_06_02_062706

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 57
UG224 (v1.4) October 10, 2007

Full-Duplex Cores
R

Error Signals in Full-Duplex Cores
Equipment problems and channel noise can cause errors during Aurora channel operation.
8B/10B encoding allows the Aurora core to detect all single bit errors and most multi-bit
errors that occur in the channel. The core reports these errors by asserting the
SOFT_ERROR signal on every cycle they are detected.

The core also monitors each GTP transceiver for hardware errors such as buffer overflow
and loss of lock. The core reports hardware errors by asserting the HARD_ERROR signal.
Catastrophic hardware errors can also manifest themselves as burst of soft errors. The core
uses the leaky bucket algorithm described in the Aurora Protocol Specification to detect large
numbers of soft errors occurring in a short period of time, and will assert the
HARD_ERROR signal when it detects them.

Whenever a hard error is detected, the Aurora core automatically resets itself and attempts
to reinitialize. In most cases, this will allow the Aurora channel to be reestablished as soon
as the hardware issue that caused the hard error is resolved. Soft errors do not lead to a
reset unless enough of them occur in a short period of time to trigger the Aurora leaky
bucket algorithm.

Aurora cores with a LocalLink data interface can also detect errors in Aurora frames.
Errors of this type include frames with no data, consecutive Start of Frame symbols, and
consecutive End of Frame symbols. When the core detects a frame problem, it asserts the
FRAME_ERROR signal. This signal is usually asserted close to a SOFT_ERROR assertion,
with soft errors being the main cause of frame errors.

TXP[0:m-1] Output Positive differential serial data output pin.

TXN[0:m-1] Output Negative differential serial data output pin.

Notes:
1. n is the number of bytes in the interface; maximum value of n is 16 for the UFC interface
2. Data width is given by [0:(8n-1)]
3. REM bus widths are given by [0:r(n)], where r(n) = ceiling [{log2(n)}-1]
4. m is the number of GTP transceivers
5. LANE_UP width is given by [0:m-1]

Table 6-1: Status and Control Ports for Full-Duplex Cores (Continued)

Name Direction Description

http://www.xilinx.com

58 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 6: Status, Control, and the GTP Block Interface
R

Table 6-2 summarizes the error conditions the Aurora core can detect and the error signals
used to alert the user application.

Table 6-2: Error Signals in Full-Duplex Cores

Signal Description

HARD_ERROR

TX Overflow/Underflow: The elastic buffer for TX data overflows or
underflows. This can occur when the user clock and the reference
clock sources are not running at the same frequency.

RX Overflow/Underflow: The elastic buffer for RX data overflows or
underflows. This can occur when the clock source frequencies for the
two channel partners are not within 200 ppm.

Bad Control Character: The protocol engine attempts to send a bad
control character. This is an indication of design corruption or
catastrophic failure.

Soft Errors: There are too many soft errors within a short period of
time. The Aurora protocol defines a leaky bucket algorithm for
determining the acceptable number of soft errors within a given time
period. When this number is exceeded, the physical connection may
be too poor for communication using the current voltage swing and
pre-emphasis settings.

SOFT_ERROR

Invalid Code: The 10-bit code received from the channel partner was
not a valid code in the 8B/10B table. This usually means a bit was
corrupted in transit, causing a good code to become unrecognizable.
Typically, this will also result in a frame error or corruption of the
current channel frame.

Disparity Error: The 10-bit code received from the channel partner
did not have the correct disparity. This error is also usually caused by
corruption of a good code in transit, and can result in a frame error or
bad data if it occurs while a frame is being sent.

No Data in Frame: A channel frame is received with no data.

FRAME_ERROR

Truncated Frame: A channel frame is started without ending the
previous channel frame, or a channel frame is ended without being
started.

Invalid Control Character: The protocol engine receives a control
character that it does not recognize.

Invalid UFC Message Length: A UFC message is received with an
invalid length.

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 59
UG224 (v1.4) October 10, 2007

Simplex Cores
R

Full-Duplex Initialization
Full-duplex cores initialize automatically after power up, reset, or hard error. Full-duplex
modules on each side of the channel perform the Aurora initialization procedure until the
channel is ready for use. The LANE_UP bus indicates which lanes in the channel have
finished the lane initialization portion of the initialization procedure. This signal can be
used to help debug equipment problems in a multi-lane channel. CHANNEL_UP is
asserted only after the core completes the entire initialization procedure.

Aurora cores can receive data before CHANNEL_UP is asserted. Only the
RX_SRC_RDY_N signal on the user interface should be used to qualify incoming data.
CHANNEL_UP can be inverted and used to reset modules that drive the TX side of a full-
duplex channel, since no transmission can occur until after CHANNEL_UP. If user
application modules need to be reset before data reception, one of the LANE_UP signals
can be inverted and used. Data cannot be received until after all the LANE_UP signals are
asserted.

Simplex Cores

Simplex TX Status and Control Ports
Simplex TX cores allow user applications to transmit data to a simplex RX core. They have
no RX connection. Figure 6-3 shows the status and control interface for a simplex TX core.
Table 6-3 describes the function of each of the ports in the interface.

Figure 6-3: Status and Control Interface for Simplex TX Core

Simplex TX
Status and

Control
Interface

TX_ALIGNED

TX_BONDED

TX_VERIFY

TX_RESET

TX_HARD_ERROR

TX_LANE_UP

TX_CHANNEL_UP

POWER_DOWN

TX_SYSTEM_RESET

TXP

TXN
UG224_06_03_062706

http://www.xilinx.com

60 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 6: Status, Control, and the GTP Block Interface
R

Table 6-3: Status and Control Ports for Simplex TX Cores

Name Direction Description

TX_ALIGNED Input
Asserted when RX channel partner has
completed lane initialization for all lanes.
Typically connected to RX_ALIGNED.

TX_BONDED Input

Asserted when RX channel partner has
completed channel bonding. Not needed for
single-lane channels. Typically connected to
RX_BONDED.

TX_VERIFY Input
Asserted when RX channel partner has
completed verification. Typically connected to
RX_VERIFY.

TX_RESET Input

Asserted when reset is required because of
initialization status of RX channel partner. This
signal must be synchronous to USER_CLK and
must be asserted for at least one USER_CLK
cycle. Typically connected to RX_RESET.

TX_CHANNEL_UP Output

Asserted when Aurora channel initialization is
complete and channel is ready to send data. The
Aurora core can receive data before
TX_CHANNEL_UP.

TX_LANE_UP[0:m-1] Output
Asserted for each lane upon successful lane
initialization, with each bit representing one
lane (active-High).

TX_HARD_ERROR Output
Hard error detected. (Active-High, asserted
until Aurora core resets). See “Error Signals in
Simplex Cores,” page 64 for more details.

POWER_DOWN Input Drives the powerdown input of the GTP
transceiver (active-High).

TX_SYSTEM_RESET Input Resets the Aurora core (active-High).

TXP[0:m-1] Output Positive differential serial data output pin.

TXN[0:m-1] Output Negative differential serial data output pin.

Notes:
1. n is the number of bytes in the interface; maximum value of n is 16 for the UFC interface
2. Data width is given by [0:(8n-1)]
3. REM bus widths are given by [0:r(n)], where r(n) = ceiling [{log2(n)}-1]
4. m is the number of GTP transceivers
5. TX_LANE_UP width is given by [0:m-1]

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 61
UG224 (v1.4) October 10, 2007

Simplex Cores
R

Simplex RX Status and Control Ports
Simplex RX cores allow user applications to receive data from a simplex TX core. Figure 6-4
shows the status and control interface for a simplex RX core. Table 6-4, page 61 describes
the function of each of the ports in the interface.

Figure 6-4: Status and Control Interface for Simplex RX Core

Table 6-4: Status and Control Ports for Simplex RX Cores

Name Direction Description

RX_ALIGNED Output
Asserted when RX module has completed lane
initialization. Typically connected to TX_ALIGNED.

RX_BONDED Output
Asserted when RX module has completed channel
bonding. Not used for single-lane channels. Typically
connected to TX_BONDED.

RX_VERIFY Output Asserted when RX module has completed verification.
Typically connected to TX_VERIFY.

RX_RESET Output
Asserted when the RX module needs the TX module to
restart initialization. Typically connected to
TX_RESET.

RX_CHANNEL_UP Output

Asserted when Aurora channel initialization is
complete and channel is ready to send data. The
Aurora core can receive data before
RX_CHANNEL_UP.

RX_LANE_UP[0:m-1] Output

Asserted for each lane upon successful lane
initialization, with each bit representing one lane
(active-High). The Aurora core can only receive data
after all RX_LANE_UP signals are high.

FRAME_ERROR Output
Channel frame/protocol error detected. This port is
active-High and is asserted for a single clock.

RX_HARD_ERROR Output
Hard error detected. (Active-High, asserted until
Aurora core resets). See “Error Signals in Simplex
Cores,” page 64 for more details.

POWER_DOWN Input
Drives the powerdown input of the GTP transceiver
(active-High).

Simplex RX
Status and

Control
Interface RX_ALIGNED

RX_BONDED

RX_VERIFY

RX_RESET

RX_HARD_ERROR

SOFT_ERROR

FRAME_ERROR

RX_LANE_UP

RX_CHANNEL_UP

POWER_DOWN

RX_SYSTEM_RESET

RXP

RXN

UG224_06_04_062706

http://www.xilinx.com

62 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 6: Status, Control, and the GTP Block Interface
R

Simplex Both (RX and TX) Status and Control Ports
Simplex Both cores consist of a simplex TX core and a simplex RX core sharing the same set
of GTP transceivers. Like a full-duplex core, the simplex Both core transmits and receives
data. Two key differences are as follows:

• The TX and RX sides of the simplex Both core initialize and run independently of each
other, unlike the duplex core, where both TX and RX must be operational for either
direction to work.

• Simplex Both cores only connect to other simplex cores, while full-duplex cores only
connect to other full-duplex cores. The TX side of a simplex Both core connects to a
simplex RX core, or to the RX side of a simplex Both core; the RX side of a simplex
Both core connects to a simplex TX core, or to the TX side of a simplex Both core.

Figure 6-5 shows the status and control interface for a simplex Both core. Table 6-5
describes the function of each of the ports in the interface.

RX_SYSTEM_RESET Input Resets the Aurora core (active-High).

SOFT_ERROR Output
Soft error detected in the incoming serial stream. See
“Error Signals in Simplex Cores,” page 64 for more
details. (Active-High, asserted for a single clock).

RXP[0:m-1] Input Positive differential serial data input pin.

RXN[0:m-1] Input Negative differential serial data input pin.

Notes:
1. n is the number of bytes in the interface; maximum value of n is 16 for the UFC interface
2. Data width is given by [0:(8n-1)]
3. REM bus widths are given by [0:r(n)], where r(n) = ceiling [{log2(n)}-1]
4. m is the number of GTP transceivers
5. RX_LANE_UP width is given by [0:m-1]

Table 6-4: Status and Control Ports for Simplex RX Cores (Continued)

Name Direction Description

Figure 6-5: Status and Control Interface for Simplex Both Cores

TX_ALIGNED

TX_BONDED

TX_VERIFY

TX_RESET

Simplex Both
(RX and TX)
Status and

Control
Interface RX_ALIGNED

RX_BONDED

RX_VERIFY

RX_RESET

RX_HARD_ERROR

SOFT_ERROR

FRAME_ERROR

RX_LANE_UP

RX_CHANNEL_UP

POWER_DOWN

RX_SYSTEM_RESET

RXP

RXN

TX_HARD_ERROR

TX_LANE_UP

TX_CHANNEL_UP

TX_SYSTEM_RESET

TXP

TXN

UG224_06_05_062906

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 63
UG224 (v1.4) October 10, 2007

Simplex Cores
R

Table 6-5: Status and Control Ports for Simplex “Both” Cores

Name Direction Description

TX_ALIGNED Input
Asserted when RX channel partner has completed lane
initialization for all lanes. Typically connected to
RX_ALIGNED.

RX_ALIGNED Output
Asserted when RX module has completed lane
initialization. Typically connected to TX_ALIGNED.

TX_BONDED Input
Asserted when RX channel partner has completed
channel bonding. Not needed for single-lane channels.
Typically connected to RX_BONDED.

RX_BONDED Output
Asserted when RX module has completed channel
bonding. Not used for single-lane channels. Typically
connected to TX_BONDED.

TX_VERIFY Input
Asserted when RX channel partner has completed
verification. Typically connected to RX_VERIFY.

RX_VERIFY Output
Asserted when RX module has completed verification.
Typically connected to TX_VERIFY.

TX_RESET Input
Asserted when reset is required because of
initialization status of RX channel partner. Typically
connected to RX_RESET.

RX_RESET Output
Asserted when the RX module needs the TX module to
restart initialization. Typically connected to
TX_RESET.

RX_CHANNEL_UP Output
Asserted when Aurora channel initialization is
complete and channel is ready to send data. The
Aurora core can receive data before CHANNEL_UP.

TX_CHANNEL_UP Input
Asserted when Aurora channel initialization is
complete and channel is ready to send data. The
Aurora core can receive data before CHANNEL_UP.

RX_LANE_UP[0:m-1] Output

Asserted for each lane upon successful lane
initialization, with each bit representing one lane
(active-High). The Aurora core can only receive data
after all LANE_UP signals are high.

TX_LANE_UP[0:m-1] Input

Asserted for each lane upon successful lane
initialization, with each bit representing one lane
(active-High). The Aurora core can only receive data
after all LANE_UP signals are high.

FRAME_ERROR Output
Channel frame/protocol error detected. This port is
active-High and is asserted for a single clock.

RX_HARD_ERROR
TX_HARD_ERROR

Output
Hard error detected. (Active-High, asserted until
Aurora core resets). See “Error Signals in Simplex
Cores,” page 64 for more details.

POWER_DOWN Input
Drives the powerdown input of the GTP transceiver
(active-High).

http://www.xilinx.com

64 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 6: Status, Control, and the GTP Block Interface
R

Error Signals in Simplex Cores
8B/10B encoding allows RX simplex cores and the RX sides of simplex Both cores to detect
all single bit errors and most multi-bit errors in a simplex channel. The cores report these
errors by asserting the SOFT_ERROR signal on every cycle an error is detected. TX simplex
cores do not include a SOFT_ERROR port. All transmit data is assumed correct at
transmission unless there is an equipment problem.

All simplex cores monitor their GTP transceivers for hardware errors such as buffer
overflow and loss of lock. Hardware errors on the TX side of the channel are reported by
asserting the TX_HARD_ERROR signal; RX side hard errors are reported using the
RX_HARD_ERROR signal. Simplex RX and simplex Both cores use the Aurora protocol's
leaky bucket algorithm to evaluate bursts of soft errors. If too many soft errors occur in a
short span of time, RX_HARD_ERROR is asserted.

Whenever a hard error is detected, the Aurora core automatically resets itself and attempts
to reinitialize. In simplex Both cores, TX hard errors reset only the TX side, and RX errors
reset only the RX side. Resetting allows the Aurora channel to be re-established as soon as
the hardware issue that caused the hard error is resolved in most cases. Soft errors do not
lead to a reset unless enough of them occur in a short period of time to trigger the Aurora
leaky bucket algorithm.

Simplex RX and simplex Both cores with a LocalLink data interface can also detect errors in
Aurora frames when they are received. Errors of this type include frames with no data,
consecutive Start of Frame symbols, and consecutive End of Frame symbols. When the
core detects a frame problem, it asserts the FRAME_ERROR signal. This signal will usually
be asserted close to a SOFT_ERROR assertion, as soft errors are the main cause of frame
errors. Simplex TX modules do not use the FRAME_ERROR port.

RX_SYSTEM_RESET
TX_SYSTEM_RESET Input

Resets the Aurora core (active-High).

SOFT_ERROR Output
Soft error detected in the incoming serial stream. See
“Error Signals in Simplex Cores,” page 64 for more
details. (Active-High, asserted for a single clock).

RXP[0:m-1] Input Positive differential serial data input pin.

RXN[0:m-1] Input Negative differential serial data input pin.

TXP[0:m-1] Output Positive differential serial data output pin.

TXN[0:m-1] Output Negative differential serial data output pin.

Notes:
1. n is the number of bytes in the interface; maximum value of n is 16 for the UFC interface
2. Data width is given by [0:(8n-1)]
3. REM bus widths are given by [0:r(n)], where r(n) = ceiling [{log2(n)}-1]
4. m is the number of GTP transceivers
5. LANE_UP width is given by [0:m-1]

Table 6-5: Status and Control Ports for Simplex “Both” Cores (Continued)

Name Direction Description

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 65
UG224 (v1.4) October 10, 2007

Simplex Cores
R

Table 6-6 summarizes the error conditions simplex Aurora cores can detect and the error
signals uses to alert the user application.

Simplex Initialization
Simplex cores do not depend on signals from an Aurora channel for initialization. Instead,
the TX and RX sides of simplex channels communicate their initialization state through a
set of sideband initialization signals. The initialization ports are called ALIGNED,
BONDED, VERIFY, and RESET; one set for the TX side with a TX_ prefix, and one set for
the RX side with an RX_ prefix. The BONDED port is only used for multi-lane cores.

There are two ways to initialize a simplex module using the sideband initialization signals:

• Send the information from the RX sideband initialization ports to the TX sideband
initialization ports

• Drive the TX sideband initialization ports independently of the RX sideband
initialization ports using timed initialization intervals

Both initialization methods are described in the following sections.

Table 6-6: Error Signals in Simplex Cores

Signal Description TX RX Both

HARD_ERROR

TX Overflow/Underflow: The elastic buffer for TX data overflows or
underflows. This can occur when the user clock and the reference clock sources
are not running at the same frequency.

x x

RX Overflow/Underflow: The elastic buffer for RX data overflows or
underflows. This can occur when the clock source frequencies for the two
channel partners are not within 200 ppm.

x x

Bad Control Character: The protocol engine attempts to send a bad control
character. This is an indication of design corruption or catastrophic failure.

x x

Soft Errors: There are too many soft errors within a short period of time. The
Aurora protocol defines a leaky bucket algorithm for determining the
acceptable number of soft errors within a given time period. When this
number is exceeded, the physical connection may be too poor for
communication using the current voltage swing and pre-emphasis settings.

x x

SOFT_ERROR

Invalid Code: The 10-bit code received from the channel partner was not a
valid code in the 8B/10B table. This usually means a bit was corrupted in
transit, causing a good code to become unrecognizable. Typically, this will also
result in a frame error or corruption of the current channel frame.

x x

Disparity Error: The 10-bit code received from the channel partner did not
have the correct disparity. This error is also usually caused by corruption of a
good code in transit, and can result in a frame error or bad data if it occurs
while a frame is being sent.

x x

No Data in Frame: A channel frame is received with no data. x x

FRAME_ERROR

Truncated Frame: A channel frame is started without ending the previous
channel frame, or a channel frame is ended without being started.

x x

Invalid Control Character: The protocol engine receives a control character
that it does not recognize.

x x

Invalid UFC Message Length: A UFC message is received with an invalid
length.

x x

http://www.xilinx.com

66 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 6: Status, Control, and the GTP Block Interface
R

Using a Back Channel

If there is a communication channel available from the RX side of the connection to the TX
side, using a back channel is the safest way to initialize and maintain a simplex channel.
There are very few requirements on the back channel; it need only deliver messages to the
TX side to indicate which of the sideband initialization signals is asserted when the signals
change. Examples of suitable back channels include:

The aurora_example design included in the examples directory with simplex Aurora cores
shows a simple side channel that uses 3-4 I/O pins on the device.

Using Timers

For some systems a back channel is not possible. In these cases, serial channels can be
initialized by driving the TX simplex initialization with a set of timers. The timers must be
designed carefully to meet the needs of the system since the average time for initialization
depends on many channel specific conditions such as clock rate, channel latency, skew
between lanes, and noise.

Some of the initialization logic in the Aurora module uses watchdog timers to prevent
deadlock. These watchdog timers are used on the RX side of the channel, and can interfere
with the proper operation of TX initialization timers. If the RX simplex module goes from
ALIGNED, BONDED or VERIFY, to RESET, make sure that it is not because the TX logic
spend too much time in one of those states. If a particularly long timer is required to meet
the needs of the system, the watchdog timers can be adjusted by editing the lane_init_sm
module and the channel_init_sm module. For most cases, this should not be necessary and
is not recommended.

Aurora channels normally reinitialize only in the case of failure. When there is no back
channel available, event-triggered re-initialization is impossible for most errors since it is
usually the RX side that detects a failure and the TX side that must handle it. The solution
for this problem is to make timer-driven TX simplex modules reinitialize on a regular basis.
If a catastrophic error occurs, the channel will be reset and running again once the next re-
initialization period arrives. System designers should balance the average time required
for re-initialization against the maximum time their system can tolerate an inoperative
channel to determine the optimum re-initialization period for their systems.

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 67
UG224 (v1.4) October 10, 2007

Reset and Power Down
R

Reset and Power Down

Reset
The reset signals on the control and status interface are used to set the Aurora core to a
known starting state. Resetting the core stops any channels that are currently operating;
after reset, the core attempts to initialize a new channel.

On full-duplex modules, the RESET signal resets both the TX and RX sides of the channel
when asserted on the positive edge of USER_CLK. On simplex modules, the resets for the
TX and RX channels are separate. TX_SYSTEM_RESET resets TX channels;
RX_SYSTEM_RESET resets RX channels. The TX_SYSTEM_RESET is separate from the
TX_RESET and RX_RESET signals used on the simplex sideband interface.

Power Down
This is an active-Low signal. When POWER_DOWN is asserted, the GTP transceivers in
the Aurora core are turned off, putting them into a non-operating low-power mode. When
POWER_DOWN is deasserted, the core automatically resets. Be careful when asserting
this signal on cores that use TX_OUT_CLK (see the Chapter 7, “Clock Interface and
Clocking”). TX_OUT_CLK will stop when the GTP transceivers are powered down. See
the Virtex-5 RocketIO GTP Transceiver User Guide for the device you are using for details
about powering down GTP transceivers.

Timing
Figure 6-6 shows the timing for the RESET and POWER_DOWN signals. In a quiet
environment, tcu is generally less than 800 clocks; In a noisy environment, tcu can be much
longer.

Figure 6-6: Reset and Power Down Timing

USER_CLK

RESET, POWER_DOWN

CHANNEL_UP

t1 t2 t3 t4 tcutcu-1

UG224_06_06_062706

http://www.xilinx.com

68 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 6: Status, Control, and the GTP Block Interface
R

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 69
UG224 (v1.4) October 10, 2007

R

Chapter 7

Clock Interface and Clocking

Introduction
Good clocking is critical for the correct operation of the Aurora core. The core requires a
high-quality, low-jitter reference clock to drive the high-speed TX clock and clock recovery
circuits in the GTP transceiver. It also requires at least one frequency locked parallel clock
for synchronous operation with the user application.

The Virtex -5 GTP architecture has a pair of transceivers in each GTP_DUAL tile. Because
of the shared PMA PLL architecture inside the GTP_DUAL tile, each reference clock
sources both channels. The reference clock is used to produce the PLL clock, which is
divided to make individual TX and RX serial clocks and parallel clocks in each GTP
transceiver.

Each Aurora core is generated with an examples directory that includes a design called
aurora_example. This design by instantiating the generated Aurora core, demonstrates a
working clock configuration of the core. First-time users should examine the aurora
example design and use it as a template when connecting the clock interface.

Figure 7-1: Top-Level Clocking

TX Data

Control

Control

TXP/TXN

NFC Number of Idles

NFC Req

UFC TX Message Size

UFC TX Req

UFC TX Data

ClockingClock Module
-Chapter 7-

GTP Interface
-Chapter 6-

Clock Interface
-Chapter 7-

User Interface
-Chapter 4-

Aurora Module

Native Flow Control
(NFC) Interface

-Chapter 5-

User Flow Control
(UFC) Interface

-Chapter 5-

Do CC

Warn CCClock
Compensation

Module
-Chapter 8-

Clock
Compensation

-Chapter 8-

Status

Status

RXP/RXN

RX Data

NFC Ack

UFC RX Data

UFC RX Status/Ctrl

UFC TX Ack

Clocking

UG224_07_01_062606

http://www.xilinx.com

70 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 7: Clock Interface and Clocking
R

Clock Interface Ports for GTP Transceiver Cores
Table 7-1 describes the GTP Aurora core clock ports.

Table 7-1: Clock Ports for a GTP Aurora Core

Clock Ports Direction Description

DCM_NOT_LOCKED Input

If a DCM is used to generate clocks for the Aurora
core, the DCM_NOT_LOCKED signal should be
connected to the inverse of the DCM's LOCKED
signal. The clock module provided with the Aurora
core uses the DCM for clock division. The
DCM_NOT_LOCKED signal from the clock module
should be connected to the DCM_NOT_LOCKED
signal on the Aurora core. If DCM is not used to
generate clock signals for the Aurora core, tie
DCM_NOT_LOCKED to ground.

USER_CLK Input

Parallel clock shared by the Aurora core and the user
application. On GTP Aurora cores the USER_CLK is
the output of a DCM whose input is derived from
TX_OUT_CLK. The rate is the half the rate of the
TX_OUT_CLK, which is determined by the clock rate
settings of the GTP transceivers in the core.

SYNC_CLK Input

Parallel clock used by the internal synchronization
logic of the GTP transceivers in the Aurora core.
SYNC_CLK is twice the rate of USER_CLK and it is
phase aligned to the USER_CLK.

REF_CLK Input

REF_CLK (CLKP/CLKN) is a dedicated external
clock generated from an oscillator. This clock is fed
through BUFDS. To minimize the number of
oscillators, the GTP transceiver architecture has a
NORTH/SOUTH clock routing matrix using
CLKP/CLKN. A GTP_DUAL tile shares its clock with
its neighbors using dedicated clock routing resources.

GREF_CLK Input

The internal clock nets of the FPGA can provide the
reference clock for the GTP_DUAL by connecting the
output of a global clock buffer (BUFG) or a regional
clock buffer (BUFR) to the CLKIN port. This hidden
input port is an alternative reference clock source
from the global clock tree.

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 71
UG224 (v1.4) October 10, 2007

Reference Clocks for GTP Transceiver Designs
R

Reference Clocks for GTP Transceiver Designs
In GTP transceiver designs, the reference clock can be either GREFCLK or REFCLK, which
is a differential input clock for each GTP_DUAL. The reference clock for GTP_DUAL is
provided through the CLKIN port.

The three possible use models for distributing a reference clock to drive the CLKIN port
are:

• “Clocking from Inside the FPGA: GREFCLK”

• “Clocking from an External Source”

• “Clocking from a Neighboring GTP_DUAL Tile”

Clocking from Inside the FPGA: GREFCLK
GTP transceivers are arranged in pairs called GTP_DUAL tiles. The internal clock nets of
the FPGA can provide the reference clock for the GTP_DUAL by connecting the output of
a global clock buffer (BUFG) or a regional clock buffer (BUFR) to the CLKIN port. This type
of clock is called GREFCLK and should be avoided, if possible. FPGA clocking resources
introduce a large amount of jitter for operations at high speeds. Thus GREF has the lowest
performance among the clocking options. See Virtex-5 Family Overview for the jitter
margins at different speeds.

Figure 7-2 shows how a GTP_DUAL tile connects to a BUFR or a BUFG. If a BUFR is used,
it must be located in the same region as the GTP_DUAL tile.

Clocking from an External Source
Each GTP_DUAL tile has a pair of dedicated pins that can be connected to an external
clock source. To use these pins, a BUFDS primitive is instantiated. In the User Constraints
file, the BUFDS input pins are set to the dedicated clock pins for the tile. In the design, the
output of the BUFDS is connected to the CLKIN port.

Each GTP_DUAL takes differential REFCLK inputs, which are directly bonded to the
FPGA pins. REFCLK should be used for high data rate applications (1 Gb/s or higher). For
multilane Aurora designs, REFCLK of any GTP_DUAL can be used as the reference clock
for the Aurora design. Using a low-jitter oscillator delivers a high-quality clock suitable for
top-speed operation. Figure 7-3 shows a differential GTP_DUAL clock pin pair sourced by
an external oscillator on the board.

Figure 7-2: Single GTP_DUAL Tile Clocked from the FPGA

GTP_DUAL
BUFG or BUFR

CLKIN

UG224_07_02_040307

Figure 7-3: Single GTP_DUAL Tile Clocked Externally

GTP_DUAL

CLKP

IBUFDS

CLKN
CLKIN

UG224_07_03_062706

http://www.xilinx.com

72 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 7: Clock Interface and Clocking
R

Clocking from a Neighboring GTP_DUAL Tile
The external clock from one tile can be used to drive the CLKIN ports of neighboring tiles.
The example in Figure 7-4 uses the clock from one GTP_DUAL tile to clock six neighboring
tiles. A GTP_DUAL tile shares its clock with its neighbors using dedicated clock routing
resources. GREFCLK cannot be shared using these resources.

To keep the jitter of this configuration within the jitter margin for high-speed designs, the
following rules must be observed:

1. The number of GTP_DUAL tiles above the sourcing GTP_DUAL tile must not exceed
three.

2. The number of GTP_DUAL tiles below the sourcing GTP_DUAL tile must not exceed
three.

3. The total number of GTP_DUAL tiles sourced by the external clock pin pair
(CLKN/CLKP) must not exceed seven.

The maximum number of GTP transceivers that can be sourced by a single clock pin pair
translates to a maximum of 14 pairs. Designs with more than 14 GTP transceivers require
the use of multiple external clock pins to ensure that the rules for controlling jitter are
followed. When multiple clock pins are used, it is recommended that a low-skew LVDS

Figure 7-4: Multiple Tiles with a Shared Reference Clock

GTP_DUAL
CLKP

IBUFDS

CLKN
CLKIN

UG224_07_04_062806

GTP_DUAL

CLKIN

GTP_DUAL

CLKIN

GTP_DUAL

CLKIN

GTP_DUAL

CLKIN

GTP_DUAL

CLKIN

GTP_DUAL

CLKIN

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 73
UG224 (v1.4) October 10, 2007

Clock Rates for GTP Transceiver Designs
R

buffer be used externally to drive all the pins from the same low-jitter oscillator. This is
critical when several GTP transceivers are combined to form a single channel.

Note: In the current release, the CORE Generator GUI does not allow selecting an external clock
from a tile in which no GTP transceivers are selected.

Clock Rates for GTP Transceiver Designs
GTP transceivers support a wide range of serial rates. The attributes used to configure the
GTP transceivers in the Aurora core for a specific line rate are kept in the MGT_WRAPPER
module for simulation. These attributes are set automatically by the CORE Generator tool
in response to the line rate and reference clock selections made in the Configuration GUI
window for the core. Manual edits of the attributes are not recommended, but are possible
using the recommendations in the Virtex-5 RocketIO GTP Transceiver User Guide.

http://www.xilinx.com

74 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 7: Clock Interface and Clocking
R

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 75
UG224 (v1.4) October 10, 2007

R

Chapter 8

Clock Compensation

Introduction
Clock compensation is a feature that allows up to ± 100 ppm difference in the reference
clock frequencies used on each side of an Aurora channel. This feature is used in systems
where a separate reference clock source is used for each device connected by the channel,
and where the same USER_CLK is used for transmitting and receiving data.

The Aurora core's clock compensation interface enables full control over the core's clock
compensation features. A standard clock compensation module is generated with the
Aurora core to provide Aurora-compliant clock compensation for systems using separate
reference clock sources; users with special clock compensation requirements can drive the
interface with custom logic. If the same reference clock source is used for both sides of the
channel, the interface can be tied to ground to disable clock compensation.

Figure 8-1: Top-Level Clock Compensation

UG224_08_01_062606

TX Data

Control

Control

TXP/TXN

NFC Number of Idles

NFC Req

UFC TX Message Size

UFC TX Req

UFC TX Data

ClockingClock Module
-Chapter 7-

GTP Interface
-Chapter 6-

Clock Interface
-Chapter 7-

User Interface
-Chapter 4-

Aurora Module

Native Flow Control
(NFC) Interface

-Chapter 5-

User Flow Control
(UFC) Interface

-Chapter 5-

Do CC

Warn CCClock
Compensation

Module
-Chapter 8-

Clock
Compensation

-Chapter 8-

Status

Status

RXP/RXN

RX Data

NFC Ack

UFC RX Data

UFC RX Status/Ctrl

UFC TX Ack

Clocking

http://www.xilinx.com

76 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 8: Clock Compensation
R

Clock Compensation Interface
All Aurora cores include a clock compensation interface for controlling the transmission of
clock compensation sequences. Table 8-1 describes the function of the clock compensation
interface ports.

Figure 8-2 and Figure 8-3 are waveform diagrams showing how the DO_CC signal works.

The Aurora protocol specifies a clock compensation mechanism that allows up to
±100 ppm difference between reference clocks on each side of an Aurora channel. To
perform Aurora-compliant clock compensation, DO_CC must be asserted for several
cycles every clock compensation period. The duration of the DO_CC assertion and the
length of time between assertions is determined based on the width of the GTP transceiver
data interface. While DO_CC is asserted, TX_DST_RDY_N on the user interface for
modules with TX while the channel is being used to transmit clock compensation

Table 8-1: Clock Compensation I/O Ports

Name Direction Description

DO_CC Input
The Aurora core sends CC sequences on all lanes on every clock
cycle when this signal is asserted. Connects to the DO_CC
output on the CC module.

WARN_CC Input

The Aurora core will not acknowledge UFC requests while this
signal is asserted. It is used to prevent UFC messages from
starting too close to CC events. Connects to the WARN_CC
output on the CC module.

Figure 8-2: Streaming Data with Clock Compensation Inserted

USER_CLK

TX_SRC_RDY_N

TX_DST_RDY_N

TX_D[0:(8n-1)]

DO_CC

D0 D2D1 D3 D4

UG224_08_02_062706

Figure 8-3: Data Reception Interrupted by Clock Compensation

UG224_08_03_062706

USER_CLK

RX_SRC_RDY_N

RX_D[0:(8n-1)] D0 D2D1 X X D3 D4X

http://www.xilinx.com

Virtex-5 GTP Aurora v2.8 www.xilinx.com 77
UG224 (v1.4) October 10, 2007

Clock Compensation Interface
R

sequences. Table 8-2 shows the required durations and periods for 2-byte and 4-byte wide
lanes.

WARN_CC is for cores with user flow control (UFC). Driving this signal before DO_CC is
asserted prevents the UFC interface from acknowledging and sending UFC messages too
close to a clock correction sequence. This precaution is necessary because data corruption
occurs when CC sequences and UFC messages overlap. The number of lookahead cycles
required to prevent a 16-byte UFC message from colliding with a clock compensation
sequence depends on the number of lanes in the channel and the width of each lane.
Table 8-3 shows the number of lookahead cycles required for each combination of lane
width, channel width, and maximum UFC message size.

Table 8-2: Clock Compensation Cycles

Lane Width
USER_CLK Cycles
Between DO_CC

DO_CC Duration
(USER_CLK cycles)

2 5000 6

4 3000 3

Table 8-3: Lookahead Cycles

Data Interface Width Max UFC size WARN_CC Lookahead

2 2 3

2 4 4

2 6 5

2 8 6

2 10 7

2 12 8

2 14 9

2 16 10

4 2-4 3

4 6-8 4

4 10-12 5

4 14-16 6

6 2-6 3

6 8-12 4

6 14-16 5

8 2-8 3

8 10-16 4

10 2-10 3

10 12-16 4

12 2-12 3

12 14-16 4

http://www.xilinx.com

78 www.xilinx.com Virtex-5 GTP Aurora v2.8
UG224 (v1.4) October 10, 2007

Chapter 8: Clock Compensation
R

To make Aurora compliance easy, a standard clock compensation module is generated
along with each Aurora core from the CORE Generator tool, in the cc_manager
subdirectory. It automatically generates pulses to create Aurora compliant clock
compensation sequences on the DO_CC port and sufficiently early pulses on the
WARN_CC port to prevent UFC collisions with maximum-sized UFC messages. This
module always be connected to the clock compensation port on the Aurora module, except
in special cases. Table 8-4 shows the port description for the Standard CC module.

Clock compensation is not needed when both sides of the Aurora channel are being driven
by the same clock (see Figure 8-3, page 76) because the reference clock frequencies on both
sides of the module are locked. In this case, WARN_CC and DO_CC should both be tied to
ground. Additionally, the CLK_CORRECT_USE attribute can be set to false in the user
constraints file for the core. This can result in lower latencies for single lane modules.

Other special cases when the standard clock compensation module is not appropriate are
possible. The DO_CC port can be used to send clock compensation sequences at any time,
for any duration to meet the needs of specific channels. The most common use of this
feature is scheduling clock compensation events to occur outside of frames, or at specific
times during a stream to avoid interrupting data flow. In general, customizing the clock
compensation logic is not recommended, and when it is attempted, it should be performed
with careful analysis, testing, and consideration of the following guidelines:

• Clock compensation sequences should last at least 2 cycles to ensure they are
recognized by all receivers

• Be sure the duration and period selected is sufficient to correct for the maximum
difference between the frequencies of the clocks that will be used

• Do not perform multiple clock correction sequences within 8 cycles of one another

• Replacing long sequences of idles (>12 cycles) with CC sequences will result in
increased EMI

• DO_CC will have no effect until after CHANNEL_UP; DO_CC should be asserted
immediately after CHANNEL_UP since no clock compensation can occur during
initialization

14 2-14 3

14 16 4

≥16 2-16 3

Table 8-4: Standard CC I/O Port

Name Direction Description

WARN_CC Output
Connect this port to the WARN_CC input of the Aurora core
when using UFC.

DO_CC Output Connect this port to the DO_CC input of the Aurora core.

CHANNEL_UP Input
Connect this port to the CHANNEL_UP output of a full-
duplex core, or to the TX_CHANNEL_UP output of a
simplex TX or a simplex Both port.

Table 8-3: Lookahead Cycles (Continued)

Data Interface Width Max UFC size WARN_CC Lookahead

http://www.xilinx.com

	Virtex-5 GTP Aurora v2.8
	Table of Contents
	Schedule of Figures
	Schedule of Tables
	About This Guide
	Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction
	About the Core
	Recommended Design Experience
	Related Xilinx Documents
	Additional Core Resources
	Technical Support
	Feedback
	Core
	Document

	Installing and Licensing the Core
	Before You Begin
	System Requirements
	Installing the Core
	Automated Installation Using WebUpdate
	Manual Installation

	Obtaining Your License
	Installing Your License File

	Customizing the Aurora Core
	Introduction
	Using the IP Customizer
	Page 1 of the IP Customizer
	Page 2 of the IP Customizer
	Page 3 of the IP Customizer

	Aurora Project Directory Structure
	Using the Build Script
	Example Design Overview
	Using the Testbench and Simulation Scripts

	User Interface
	Introduction
	Framing Interface
	LocalLink TX Ports
	LocalLink RX Ports
	LocalLink Bit Ordering
	Transmitting Data
	Receiving Data
	Framing Efficiency

	Streaming Interface
	Streaming TX Ports
	Streaming RX Ports
	Transmitting and Receiving Data

	Flow Control
	Introduction
	Native Flow Control
	Example A: Transmitting an NFC Message
	Example B: Receiving a Message with NFC Idles Inserted

	User Flow Control
	Transmitting UFC Messages
	Receiving User Flow Control Messages
	Example D: Receiving a Multi-Cycle UFC Message

	Status, Control, and the GTP Block Interface
	Introduction
	Full-Duplex Cores
	Full-Duplex Status and Control Ports
	Error Signals in Full-Duplex Cores
	Full-Duplex Initialization

	Simplex Cores
	Simplex TX Status and Control Ports
	Simplex RX Status and Control Ports
	Simplex Both (RX and TX) Status and Control Ports
	Error Signals in Simplex Cores
	Simplex Initialization

	Reset and Power Down
	Reset
	Power Down
	Timing

	Clock Interface and Clocking
	Introduction
	Clock Interface Ports for GTP Transceiver Cores
	Reference Clocks for GTP Transceiver Designs
	Clocking from Inside the FPGA: GREFCLK
	Clocking from an External Source
	Clocking from a Neighboring GTP_DUAL Tile

	Clock Rates for GTP Transceiver Designs

	Clock Compensation
	Introduction
	Clock Compensation Interface

