
R

Virtex-5 FPGA Embedded
Tri-Mode Ethernet MAC
Wrapper v1.5

Getting Started Guide
UG340 September 19, 2008

www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 September 19, 2008

Xilinx is disclosing this Specification to you solely for use in the development of designs to operate on Xilinx FPGAs. Except as stated herein,
none of the Specification may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or
by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of this Specification may violate copyright laws, trademark laws, the laws of privacy and publicity, and
communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Specification; nor does Xilinx convey any license under its
patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of
the Specification. Xilinx reserves the right to make changes, at any time, to the Specification as deemed desirable in the sole discretion of
Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not
assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with
the Specification.

THE SPECIFICATION IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND
IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN
INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE SPECIFICATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF
THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE SPECIFICATION, EVEN IF
YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN
CONNECTION WITH YOUR USE OF THE SPECIFICATION, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT
EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE SPECIFICATION. YOU ACKNOWLEDGE
THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT
MAKE AVAILABLE THE SPECIFICATION TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Specification is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring
fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support,
or weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Specification in such High-Risk Applications is fully at your risk.

© 2006-2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC Wrapper Getting Started Guide

The following table shows the revision history for this document.

R

Version Revision

10/23/06 1.1 Initial Xilinx release.

2/15/07 2.1 Update for version 1.2 of the core; Xilinx tools 9.1i.

5/5/07 3.1 Update for version 1.3 of the core; early access only version.

8/8/07 4.1 Update for full version 1.3 release of the core.

3/24/08 5.1 Update to core version 1.4; Xilinx tools 10.1; Virtex-5 FXT FPGA support.

9/19/08 6.1 Update to core version 1.5 and Virtex-5 TXT FPGA support.

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com
UG340 September 19, 2008

Schedule of Figures . 7

Preface: About This Guide
Contents. 9
Conventions . 10

Typographical . 10
Online Document . 11

Chapter 1: Introduction
System Requirements . 13
About the Ethernet MAC Wrapper Core. 13

Designs Using RocketIO Transceivers . 13
Recommended Design Experience . 14
Additional Resources. 14
Technical Support . 14
Feedback . 14

Ethernet MAC Wrapper . 14
Document . 14

Chapter 2: Quick Start Example Design
Overview . 15
Generating the Ethernet MAC Wrapper . 17
Implementing the Example Design . 19
Running the Simulation . 19

Functional Simulation . 19
Timing Simulation . 20

What’s Next? . 21

Chapter 3: Customizing the Core
Ethernet MAC Wrapper Screens . 23

Core Configuration Options: Screen 1 . 24
EMAC Configuration Options: Screen 2 . 25
EMAC Configuration: Screen 3 . 28
MDIO/EMAC Configuration: Screen 4 . 30

Chapter 4: Detailed Example Design
Directory Structure and File Descriptions . 33

<project directory> . 34
<project directory>/<component name> . 34
<component name>/doc . 34
<component name>/example_design . 35
<component name>/example_design/client . 35
<component_name>/example_design/client/fifo . 36
<component_name>/example_design/physical . 36
<component name>/implement . 37
implement/results . 38
<component name>/simulation . 38

Table of Contents

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com
UG340 September 19, 2008

simulation/functional . 39
simulation/timing . 39

Implementation and Test Scripts . 40
Setting up for Simulation . 40
Implementation Scripts for Timing Simulation . 40
Test Scripts For Timing Simulation . 41
Test Scripts For Functional Simulation . 42

Example Design . 43
HDL Example Design . 43
10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO . 44
Address Swap Module . 46
Physical Interface . 46

Demonstration Test Bench . 47
Test Bench Functionality . 47
Changing the Test Bench . 49

Appendix A: Using the Client Side FIFO
Overview of LocalLink Interface . 51
Receive FIFO Operation . 52

LocalLink Interface . 52
Transmit FIFO Operation . 53

LocalLink Interface . 53
Clock Requirements . 54
User Interface Data Width Conversion . 54

Appendix B: Ethernet MAC Clocking
Single-Speed Clocking . 55

1000Base-X PCS/PMA: Virtex-5 LXT and SXT Devices . 55
1000Base-X PCS/PMA: Virtex-5 FXT and TXT Devices . 57
PCS/PMA in Overclocking Mode:

Virtex-5 LXT, SXT, FXT, and TXT Devices . 58
GMII/RGMII at 1000 Mbps . 59

Multi-Speed Clocking . 59
SGMII at Multiple Speeds: Virtex-5 LXT and SXT Devices . 60
SGMII at Multiple Speeds: Virtex-5 FXT and TXT Devices . 61
GMII/MII/RGMII at Multiple Speeds . 62
GMII/MII at Multiple Speeds with Clock Enable . 64
RGMII at Multiple Speeds with Clock Enable . 65
GMII/MII at Multiple Speeds with Byte PHY. 65

Appendix C: Constraining the Example Design
Block Level Constraints . 67

PCS/PMA/SGMII Clock Constraints . 67
GMII/RGMII 1000 Mbps Clock Constraints . 68
GMII/MII/RGMII 10/100/1000 Mbps Clock Constraints . 69
GMII IDELAY_VALUE Constraints . 70
RGMII IDELAY_VALUE Constraints . 71

LocalLink Level Constraints . 72

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com
UG340 September 19, 2008

Example Design Level Constraints . 73
GMII/MII Interface . 73
RGMII v2.0 Interface . 73
Example Placement . 73
GMII/RGMII IODELAY Controller Clock Constraint . 74
Host Interface Clock Constraint . 74
DCR Interface Clock Constraint. 74

Appendix D: SGMII Receiver Elastic Buffer
SGMII Capabilities . 75

FPGA Fabric Rx Elastic Buffer Requirement . 75
The RocketIO Rx Elastic Buffer . 77
Jumbo Frame Reception . 78

http://www.xilinx.com

www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 September 19, 2008

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com
UG340 September 19, 2008

Chapter 1: Introduction

Chapter 2: Quick Start Example Design
Figure 2-1: Default Example Design and Test Bench . 16
Figure 2-2: Virtex-5 Embedded Tri-Mode Ethernet MAC Wrapper Main Screen 18

Chapter 3: Customizing the Core
Figure 3-1: Core Configuration Options . 24
Figure 3-2: EMAC Configuration Options. 26
Figure 3-3: EMAC Configuration Options. 28
Figure 3-4: MDIO Configuration . 30

Chapter 4: Detailed Example Design
Figure 4-1: HDL Example Design . 43
Figure 4-2: Frame Transfer across LocalLink Interface . 44
Figure 4-3: Modification of Frame Data by Address Swap Module . 46
Figure 4-4: Demonstration Test Bench. 47

Appendix A: Using the Client Side FIFO
Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation . 51
Figure A-2: Frame Transfer across LocalLink Interface. 52
Figure A-3: Frame Transfer with Flow Control . 52

Appendix B: Ethernet MAC Clocking
Figure B-1: PCS/PMA/SGMII Clocking at 1000 Mbps: Virtex-5 LXT and SXT 56
Figure B-2: PCS/PMA/SGMII Clocking at 1000 Mbps: Virtex-5 FXT and TXT Devices 57
Figure B-3: PCS/PMA Clocking at 2000 Mbps . 58
Figure B-4: GMII/RGMII Clocking at 1000 Mbps . 59
Figure B-5: SGMII Clocking at 10/100/1000 Mbps: Virtex-5 LXT and SXT Devices 60
Figure B-6: SGMII Clocking at 10/100/1000 Mbps: Virtex-5 FXT and TXT Devices. 61
Figure B-7: GMII/RGMII Clocking at 10/100/1000 Mbps . 62
Figure B-8: MII Clocking at 10/100 Mbps . 63
Figure B-9: GMII/MII Clocking at 10/100/1000 Mbps with Clock Enables . 64
Figure B-10: RGMII Clocking at 10/100/1000 Mbps with Clock Enable. 65
Figure B-11: GMII Clocking at 10/100/1000 Mbps with Byte PHY . 66
Figure B-12: MII Clocking at 10/100 Mbps with Byte PHY . 66

Appendix C: Constraining the Example Design
Figure C-1: Input GMII Timing . 70
Figure C-2: RGMII Input Timing . 71

Schedule of Figures

http://www.xilinx.com

www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 September 19, 2008

R

Appendix D: SGMII Receiver Elastic Buffer
Figure D-1: SGMII Implementation: Separate Clock Sources . 76
Figure D-2: SGMII Implementation: Shared Clock Sources . 77

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 9
UG340 Getting Started Guide September 19, 2008

R

Preface

About This Guide

The Virtex-5® FPGA Embedded Tri-Mode Ethernet MAC Wrapper Getting Started Guide
provides information about generating an embedded Tri-Mode Ethernet MAC for
Virtex-5 FPGA devices, customizing and simulating the wrapper files utilizing the
provided example design, and running the design files through implementation using the
Xilinx tools.

Contents
This guide contains the following chapters:

• Preface, “About this Guide” introduces the organization and purpose of this guide
and the conventions used in this guide.

• Chapter 1, “Introduction” describes the Virtex-5 FPGA Embedded Tri-Mode Ethernet
MAC wrapper and related information, including recommended design experience,
additional resources, technical support, and submitting feedback to Xilinx.

• Chapter 2, “Quick Start Example Design,”describes how to quickly generate the
example design using the CORE Generator™ Graphical User Interface (GUI)
software.

• Chapter 3, “Customizing the Core,”describes the CORE Generator software
customization options.

• Chapter 4, “Detailed Example Design,”provides detailed information about the
example design and demonstration test bench.

• Appendix A, “Using the Client Side FIFO,” describes the operation of the example
design client side FIFO.

• Appendix B, “Ethernet MAC Clocking,” describes the provided clocking scheme for
each interface.

• Appendix C, “Constraining the Example Design,” describes the timing and placement
constraints included with the example design.

• Appendix D, “SGMII Receiver Elastic Buffer,” defines the SGMII capabilities for the
core.

http://www.xilinx.com

10 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement

ngdbuild design_name

Italic font

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

<text in brackets> User-defined variable for
directory names. <component_name>

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

Also used with pipe symbol to
indicate either one or the
other.

ngdbuild [option_name]
design_name

client_loopback_[8 | 16].v

Braces { } A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 11
UG340 Getting Started Guide September 19, 2008

Conventions
R

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

See “Title Formats” in Chapter 1
for details.

Blue, underlined text Hyperlink to a website (URL)
Go to www.xilinx.com for the
latest speed files.

http://www.xilinx.com

12 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Preface: About This Guide
R

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 13
UG340 Getting Started Guide September 19, 2008

R

Chapter 1

Introduction

This chapter introduces the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC (Ethernet
MAC) wrapper and provides related information, including recommended design
experience, additional resources, technical support, and submitting feedback to Xilinx. The
Ethernet MAC wrapper supports Verilog HDL and VHDL.

System Requirements

Windows

• Windows XP® Professional 32-bit/64-bit

• Windows Vista® Business 32-bit/64-bit

Linux

• Red Hat® Enterprise WS 4.0 32-bit/64-bit

• Red Hat Enterprise Desktop 5.0 32-bit/64-bit (with Workstation option)

• SUSE Linux Enterprise (SLE) v10.1 32-bit/64-bit

Software

• ISE® 10.1

About the Ethernet MAC Wrapper Core
The Ethernet MAC wrapper is included in the latest IP Update on the Xilinx IP Center. For
detailed information about the core, visit the Ethernet MAC wrapper product page. The
Ethernet MAC wrapper is provided to all licensed Xilinx ISE customers free of charge and
is generated using the Xilinx CORE Generator v10.1 or higher.

Designs Using RocketIO Transceivers
RocketIO™ transceivers are defined by device family in the following way:

• For Virtex-5 LXT and SXT devices, RocketIO GTP transceivers

• For Virtex-5 FXT and TXT devices, RocketIO GTX transceivers

Throughout this guide, the term RocketIO transceiver is used to represent any or all of the
RocketIO transceivers; select the RocketIO transceiver specific to the desired target device.

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/V5_Embedded_TEMAC_Wrapper.htm

14 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 1: Introduction
R

Recommended Design Experience
Although the Ethernet MAC wrapper is fully verified, the challenge associated with
implementing a complete design varies depending on the configuration and functionality
of the application. For best results, previous experience building high performance,
pipelined FPGA designs using Xilinx implementation software and user constraint files
(UCF) is recommended. Contact your local Xilinx representative for a closer review and
estimation for your specific requirements.

Additional Resources
For additional details and updates, see the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC
User Guide, available from
www.xilinx.com/support/documentation/virtex-5_user_guides.htm.

Technical Support
The fastest method for obtaining specific technical support for the Ethernet MAC wrapper
is through the www.xilinx.com/support website. Questions are routed to a technical
support team with specific expertise using the Ethernet MAC wrapper.

Xilinx provides technical support for use of this product as described in the Virtex-5 FPGA
Embedded Tri-Mode Ethernet MAC Data Sheet, Virtex-5 FPGA Embedded Tri-Mode Ethernet
MAC Getting Started Guide, and the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User
Guide. Xilinx does not guarantee timing, functionality, or support of this product for
designs that do not follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the Ethernet MAC wrapper and the
supplied documentation.

Ethernet MAC Wrapper
For comments or suggestions about the Ethernet MAC wrapper, please submit a webcase
from www.xilinx.com/support. Be sure to include the following information:

• Product name

• Version number

• Explanation of your comments

Document
For comments or suggestions about this document, please submit a webcase from
www.xilinx.com/support. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

www.xilinx.com/support/documentation/virtex-5_user_guides.htm
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 15
UG340 Getting Started Guide September 19, 2008

R

Chapter 2

Quick Start Example Design

This chapter provides instructions for generating the Ethernet MAC wrapper using the
CORE Generator GUI.

Overview
The Ethernet MAC wrapper consists of the following:

• A wrapper file that assigns the attributes of each Ethernet MAC to the values selected
in the Core Generator GUI. In addition, unused inputs are tied low and unused
outputs are disconnected.

• An example design with a three-level hierarchy:

− The block-level wrapper instantiates the Ethernet MAC wrapper and the interface
logic for each of the selected physical interfaces.

− The LocalLink wrapper connects the transmit and receive client interfaces of each
selected Ethernet MAC to a LocalLink FIFO.

− The example design wrapper connects the FIFOs so that data received at the client
looped back to the transmitter. A small address-swap module is also instantiated
to swap the source and destination addresses of the incoming frame. Clock
management logic including DCMs and Global Clock Buffer instances, where
required, is also included.

• A demonstration test bench to exercise the wrappers and the example design. This
injects frames into the physical interface receiver of each selected Ethernet MAC and
monitors the data that is output at the transmitter.

http://www.xilinx.com

16 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 2: Quick Start Example Design
R

Figure 2-1 displays the example design and test bench provided with the Ethernet MAC
wrapper. The example design has been tested with Xilinx ISE 10.1, Cadence® IUS v6.1,
Mentor Graphics® ModelSim® 6.3c, and Synopsys® VCS 2006.06-SP1.

Figure 2-1: Default Example Design and Test Bench

Address
Swap

 Module

Reset

Demonstration Testbench

Clock Gen

Monitor

Management

Stimulus

Address
Swap

 Module

Monitor

Stimulus

Wrapper

Attribute Assignment

Local Link Wrapper

Example DesignWrapper

Virtex-5 Embedded
EMAC

EMAC0

EMAC1

P
hy

si
ca

l I
n
te

rf
a
ce

 L
o
g
ic

 a
n
d
 I
O

B
s

Management
IOBs

P
hy

si
ca

l I
n
te

rf
a
ce

 L
o
g
ic

 a
n
d
 I
O

B
s

Block Level Wrapper

10/100/1000 Mbps

 Ethernet FIFO

Rx Client
 FIFO

Tx Client
FIFO

Rx Client
 FIFO

Tx Client
FIFO

10/100/1G
 Ethernet FIFO

Clock IOBs
and Management

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 17
UG340 Getting Started Guide September 19, 2008

Generating the Ethernet MAC Wrapper
R

Generating the Ethernet MAC Wrapper
To generate the Ethernet MAC wrapper and example design, do the following:

1. Start the CORE Generator.

For help starting and using the CORE Generator tool, the CORE Generator Guide at
http://toolbox.xilinx.com/docsan/xilinx9/help/iseguide/mergedProjects/coregen/
coregen.htm.

2. Choose File > New Project.

3. Set the following project options:

− From Target Architecture, select Virtex-5.

Note: If an unsupported silicon family or part is selected, the Ethernet MAC wrapper
is not displayed in the taxonomy tree.

− For Design Entry, select either VHDL or Verilog; for Vendor, select Other.

4. After creating the project, locate the directory containing the Ethernet MAC wrapper
in the taxonomy tree. The project appears under one of the following:

− Communications & Networking /Ethernet

− Communications & Networking /Networking

− Communications & Networking/Telecommunications

5. Double-click Virtex-5 Embedded Tri-Mode Ethernet MAC Wrapper. The initial
customization screen appears.

http://www.xilinx.com
http://toolbox.xilinx.com/docsan/xilinx9/help/iseguide/mergedProjects/coregen/coregen.htm
http://toolbox.xilinx.com/docsan/xilinx9/help/iseguide/mergedProjects/coregen/coregen.htm

18 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 2: Quick Start Example Design
R

Figure 2-2: Virtex-5 Embedded Tri-Mode Ethernet MAC Wrapper Main Screen

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 19
UG340 Getting Started Guide September 19, 2008

Implementing the Example Design
R

6. In the Component Name field, enter a name for the core instance, and then click Finish
to generate the example design using the default values.

The wrapper and its supporting files, including the example design, are generated in your
project directory. For a detailed description of the design example files and directories, see
Chapter 4, “Detailed Example Design.”

A functional simulation directory is created that contains scripts to simulate the example
design using the structural hdl models. For more information see “Functional Simulation,”
page 19.

Implementing the Example Design
The HDL example design can be processed using the Xilinx implementation toolset. The
generated output files include several scripts to assist the user in running the Xilinx
software.

In the examples below, <project_dir> is the CORE Generator project directory and
<component_name> is the name entered in the Component Name field.

Open a command prompt or shell in your project directory, then enter the following
commands:

For Linux

% cd <component_name>/implement

% ./implement.sh

For Windows

ms-dos> cd <component_name>\implement

ms-dos> implement.bat

These commands execute a script that synthesizes, builds, maps, and place-and-routes the
example design. The resulting files are placed in the results directory.

These commands start a script that synthesizes the HDL example design and builds the
design. The script also maps and place-and-routes the example design. It then creates
gate-level netlist HDL files in both VHDL and Verilog, along with associated timing
information (SDF) files.

Running the Simulation

Functional Simulation
To run the functional simulation you must have the Xilinx Simulation Libraries compiled
for your system. For more information, see Compiling Xilinx Simulation Libraries
(COMPXLIB) in the Xilinx ISE Synthesis and Verification Design Guide, which can be
obtained from www.xilinx.com/support/software_manuals.htm. In addition, use the
following guidelines to determine the simulator required for your design:

Virtex-5 Devices

Virtex-5 device designs require either a Verilog LRM-IEEE 1364-2005 encryption-compliant
simulator or a SWIFT-compliant simulator.

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

20 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 2: Quick Start Example Design
R

• For a Verilog LRM-IEEE 1364-2005 encryption-compliant simulator, ModelSim v6.3c
is currently supported.

• For a SWIFT-compliant simulator, Cadence IUS v6.1 and Synopsys VCS 2006.06-SP1
are currently supported.

In the simulation examples that follow, <project_dir> is the CORE Generator project
directory, and <component_name> is the component name as entered in the core
customization dialog box.

VHDL Simulation

To run a VHDL functional simulation:

• Launch the simulator and set the current directory to
<project_dir>/<component_name>/simulation/functional

• For ModelSim map the UNISIM library:

ModelSim> vmap unisim <path to compiled libraries>/unisim

• Launch the simulation script:

ModelSim> do simulate_mti.do

IUS> ./simulate_ncsim.sh

The scripts compile the example design files and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MACs.

Verilog Simulation

To run a Verilog functional simulation:

• Launch the simulator and set the current directory to
<project_dir>/<component_name>/simulation/functional

• For ModelSim map the UNISIM library:

ModelSim> vmap unisims_ver <path to compiled libraries>/unisims_ver

• Launch the simulation script:

ModelSim> do simulate_mti.do

IUS> ./simulate_ncsim.sh

The scripts compile the example design files and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MACs.

Timing Simulation
To run the gate-level simulation you must have the Xilinx Simulation Libraries compiled
for your system. For more information, see Compiling Xilinx Simulation Libraries
(COMPXLIB) in the Xilinx ISE Synthesis and Verification Design Guide, which can be
obtained from http://www.xilinx.com/support/software_manuals.htm.

In the simulation examples that follow, <project_dir> is the CORE Generator project
directory; <component_name> is the component name as entered in the core customization
dialog box.

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 21
UG340 Getting Started Guide September 19, 2008

What’s Next?
R

VHDL Simulation

To run a VHDL timing simulation:

• Launch the simulator and set the current directory to
<project_dir>/<component_name>/simulation/timing

• For ModelSim map the SIMPRIM library:

ModelSim> vmap simprim <path to compiled libraries>/simprim

• Launch the simulation script:

ModelSim> do simulate_mti.do

IUS> ./simulate_ncsim.sh

The scripts compile the gate-level model and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MACs.

Verilog Simulation

To run a Verilog timing simulation:

• Launch the ModelSim simulator and set the current directory to
<project_dir>/<component_name>/simulation/timing

• For ModelSim map the SIMPRIM library:

ModelSim> vmap simprims_ver <path to
compiled_libraries>/simprims_ver

• Launch the simulation script:

ModelSim> do simulate_mti.do

IUS> ./simulate_ncsim.sh

The scripts compile the gate-level model and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MACs.

What’s Next?
For detailed information about the example design, including guidelines for modifying the
design and extending the test bench, see Chapter 4, “Detailed Example Design.”

http://www.xilinx.com

22 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 2: Quick Start Example Design
R

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 23
UG340 Getting Started Guide September 19, 2008

R

Chapter 3

Customizing the Core

This chapter describes Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC Wrapper GUI to
customize the functions of the core.

Ethernet MAC Wrapper Screens
The Ethernet MAC Wrapper GUI consists of several screens. The first screen is used to set
core parameters and enable one or both Ethernet MACs. Subsequent screens are used to
configure all enabled EMACs. Note that if both EMACs are enabled, the subsequent
screens are displayed twice—once each for each enabled EMAC.

• Core Configuration Options: Screen 1. Used to name the core, select the desired
interface, and enable the number of EMACs.

• EMAC Configuration Options: Screen 2. Used to select the PHY interface, speed,
data width, global buffer usage, management data (MDIO) bus enable, and flow
control configuration for the specified EMAC. If both EMACs are enabled, this screen
is displayed twice; once for each enabled EMAC.

• EMAC Configuration: Screen 3. Used to set transmitter, receiver, and address filter
configuration. If both EMACs are enabled, this screen is displayed twice; once for
each enabled EMAC.

• MDIO/EMAC Configuration: Screen 4. This screen is only displayed if the Enable
Management Data (MDIO) option is selected on the first screen.

http://www.xilinx.com

24 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 3: Customizing the Core
R

Core Configuration Options: Screen 1
Use the initial configuration screen to define the core name, select options for shared
interfaces and host type, and enable one or both EMACs.

Component Name

Enter the base name of the output files generated for the core. The name must begin with
a letter and be composed of the following characters: a to z, 0 to 9, and “_.”

Host Type

Select the core host bus interface in one of the following ways:

• Device Control Registers (DCR). Accesses the configuration registers through DCR
interface. When the DCR bus is used to access the internal registers of the Ethernet
MAC, the DCR bus bridge in the host interface translates commands carried over the
DCR bus into Ethernet MAC host bus signals. The resulting signals are input into one
of the Ethernet MACs.

• Host. Accesses the Host Interface through the fabric. When the generic host bus is
used, the HOSTEMAC1SEL signal selects either the host access of EMAC0 or EMAC1.

Figure 3-1: Core Configuration Options

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 25
UG340 Getting Started Guide September 19, 2008

Ethernet MAC Wrapper Screens
R

When HOSTEMAC1SEL is asserted, the host accesses EMAC1. HOSTEMAC1SEL acts
as the host address bit 10. If only one Ethernet MAC is used, this signal can be tied off
to use either one of the Ethernet MACs during the power-up FPGA configuration.

• None. The Ethernet MACs are configured using attributes set depending on the
configuration options selected in the GUI, and are loaded into the Ethernet MACs on
power-up or when reset is asserted. If None is selected, the transmit and receive
engines must be enabled to ensure proper operation of the Ethernet MAC.

Enable EMACs

Select one or both to enable one or both EMACs; at least one EMAC must be enabled to
generate a core. Note that in this chapter, the EMAC configuration screens (screens 2, 3,
and 4) define options for EMAC 0 only. Note that if EMAC 1 is also enabled, an additional
set of configuration screens appear for EMAC 1 after configuration of EMAC 0 is complete.

DCR-specific Options

EMAC 0 and EMAC 1. Enter a unique address for each enabled EMAC in the DCR Base
Address field.

EMAC Configuration Options: Screen 2
This EMAC configuration screen lets you determine the Physical (Phy) interface, speed,
data width, global buffer usage, management data (MDIO) bus enable, and flow control
configuration for the specified EMAC. Some options on this screen are dimmed depending
on the Phy Interface selected; not all options are available with all Phy interface types.

http://www.xilinx.com

26 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 3: Customizing the Core
R

PHY Interface

Select the Phy interface type from the drop-down list:

• MII

• GMII

• RGMII v1.3

• RGMII v2.0

• SGMII

• 1000BASE-X PCS/PMA

Figure 3-2: EMAC Configuration Options

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 27
UG340 Getting Started Guide September 19, 2008

Ethernet MAC Wrapper Screens
R

Speed

Configures the core to run at a single or tri-speed rate.

• Tri-speed. Configures the core to run at a tri-speed rate.

• 1000 Mbps. Configures the core to run at a single rate.

• 10/100 Mbps. Configures the core to run at 10 or 100 Mbps.

Client Side Data Width

• 8-bit. An 8-bit data width is available for all interface types.

• 16-bit. A 16-bit client interface is available for the 100BASE-X PCS/PMA interface,
which enables the EMAC to operate at 250 MHz, while the logic in the FPGA fabric is
clocked at 125 MHz. The 16-bit option yields a 2.5 Gbps line rate.

Global Buffer Usage

• Clock Enable. Selecting Clock Enable reduces the number of BUFGs by requiring the
user logic to use a separate clock-enable signal. See the Virtex-5 FPGA Tri-Mode
Ethernet MAC User Guide for more information about determining the clock-enable
signal setup. This option is available for 10 or 100 Mbps operation using the MII
interface as well as for Tri-speed operation in GMII and RGMII modes.

• Byte PHY. In Tri-Speed GMII mode, selecting Byte PHY reduces the number of BUFGs
by adding the Byte PHY to the physical side logic. See the Virtex-5 FPGA Embedded
Tri-Mode Ethernet MAC User Guide for more information about Byte PHY mode.

Management Data

MDIO. When selected, the MDIO option enables the MDIO ports on the core to access the
registers in the internal and external PHY. When the MDIO option is selected for one or
both EMACs, an MDIO configuration screen appears (for each EMAC) before generating
the core. When unselected, the MDIO configuration screen is not displayed.

SGMII Capabilities

• 10/100/1000 Mbps (no clock constraints required). Default setting; provides the
implementation using the Receiver Elastic Buffer in FPGA fabric. This alternative
Receiver Elastic Buffer utilizes a single block RAM to create a buffer twice as large as
the one present in the RocketIO transceiver, subsequently consuming extra logic
resources. However, this default mode provides reliable SGMII operation under all
conditions.

• 10/100/1000 Mbps OR 100/1000 Mbps (clock constraints required). Uses the receiver
elastic buffer present in the RocketIO transceivers. This is half the size and can
potentially under- or overflow during SGMII frame reception at 10 Mbps operation.
However, there are logical implementations where this can be proven reliable: if so it
is favored because of its lower logic utilization.

For detailed information about SGMII capabilities, see Appendix D, “SGMII Receiver
Elastic Buffer.”

http://www.xilinx.com

28 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 3: Customizing the Core
R

Flow Control Configuration

Allows both the receive and transmit flow control to be enabled or disabled. Flow control
is disabled by default.

• Tx Flow Control Enable. Enable transmit flow control.

• Rx Flow Control Enable. Enable receive flow control.

EMAC Configuration: Screen 3
The next EMAC configuration screen defines the configuration of each EMAC. For each
enabled EMAC, a separate screen is provided, with the selected EMAC displayed at the
top of the screen.

Transmitter Configuration

Transmitter configuration refers to the Ethernet MAC configuration registers located at
0x280. Initial values for several bits of this register can be set using the GUI. Changes to the
register bits can be written using one of the host interfaces, if enabled. For more
information, see “Configuration Registers,” in the Virtex-5 FPGA Embedded Tri-Mode Ethernet
Ethernet MAC User Guide.

Figure 3-3: EMAC Configuration Options

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 29
UG340 Getting Started Guide September 19, 2008

Ethernet MAC Wrapper Screens
R

• TX Reset. When Host type is set to None, the Initial value of this bit cannot be
changed.

• Jumbo Frame Enable. When selected, the transmitter sends frames greater than the
maximum length specified in the IEEE Std 802.3-2002. When unselected, the
transmitter sends only frames less than the specified maximum length.

• In-band FCS Enable. When selected, this bit sets the Ethernet MAC transmitter to be
ready for the FCS field from the client.

• TX Enable 0. When Host type is set to None, the Initial value of this bit cannot be
changed.

• VLAN Enable. When selected, the VLAN transmitter allows transmission of the
VLAN-tagged frames.

• Half-Duplex Enable. When selected, the transmitter operates in half-duplex mode
(applicable only for 10 and 100 Mbps). When unselected, the transmitter operates in
full-duplex mode.

• IFG Adjust Enable. When selected, the transmitter reads the value of
CLIENTEMAC#TXIFGDELAY at the start of frame transmission and adjusts the IFG.

Receiver Configuration

Receiver configuration refers to the Ethernet MAC configuration registers located at 0x240.
Initial values for several bits of this register can be set using the GUI. Changes to the
register bits may be written using one of the host interfaces, if enabled. For more
information, see “Configuration Registers,” in the Virtex-5 FPGA Embedded Tri-Mode Ethernet
Ethernet MAC User Guide.

• RX Reset. When Host type is set to None, the Initial value of this bit cannot be
changed.

• Jumbo Frame Enable. When selected, the Ethernet MAC receiver accepts frames over
the maximum length specified in the IEEE Std 802.3-2002 specification. When
unselected, the receiver accepts only frames up to the specified maximum.

• In-band FCS Enable. When selected, the receiver passes the FCS field up to the client.
When unselected, the FCS field is not passed to the client. In either case, the FCS is
verified on the frame.

• RX Enable. When Host type is set to None, the Initial value of this bit cannot be
changed.

• VLAN Enable. When selected, the receiver accepts VLAN tagged frames. The
maximum payload length increases by four bytes.

• Half-Duplex Enable. When selected, the receiver operates in half-duplex mode.
When unselected, the receiver operates in full-duplex mode.

• RX Disable Length. When selected, disables the Length/Type field check on the
frame.

Address Filter Configuration

The Unicast Pause MAC Address (entered by the user) is used by the EMAC to compare
the destination address of any incoming flow control frames, and as the source address for
any outbound flow control frames.

The address is ordered for the least significant byte in the register to have the first byte
transmitted or received, for example, an EMAC address of AA-BB-CC-DD-EE-FF is
entered as FF-EE-DD-CC-BB-AA.

http://www.xilinx.com

30 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 3: Customizing the Core
R

MDIO/EMAC Configuration: Screen 4
The MDIO Configuration screen is only displayed if the 1000BASE-X PCS/PMA or SGMII
PHY interface is selected and the Enable Management Data (MDIO) option is selected in the
“Management Data” section of the first EMAC configuration screen.

If both EMACs are enabled identically, the screen appears twice; if only one EMAC uses
the 1000BASE-X PCS/PMA or SGMII PHY interface and MDIO option, the screen appears
only once for the enabled EMAC.

MDIO Configuration

• PHY Reset. If selected, the PHY is reset.

• PHY AN Enable. If selected, auto-negotiation is enabled.

• PHY Isolate. If selected, the PHY is electrically isolated.

• PHY Powerdown. If selected, the PHY powers down.

• PHY Loopback MSB. If selected, the PHY loopback is enabled.

• PHY Unidirection Enable. If selected, the PHY is capable of transmitting data
regardless of whether a valid link has been established.

Figure 3-4: MDIO Configuration

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 31
UG340 Getting Started Guide September 19, 2008

Ethernet MAC Wrapper Screens
R

• PHY Loopback in Transceiver. If selected, loopback occurs in the RocketIO
transceiver. Otherwise loopback occurs in the Ethernet MAC.

• PHY Link Timer Value. Programmable auto negotiation link timer value.

http://www.xilinx.com

32 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 3: Customizing the Core
R

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 33
UG340 Getting Started Guide September 19, 2008

R

Chapter 4

Detailed Example Design

This chapter provides detailed information about working with the example design,
including a description of files and the directory structure generated by the CORE
Generator software, the purpose and contents of the implementation scripts, the contents
of the example HDL wrappers, and the operation of the demonstration test bench.

Directory Structure and File Descriptions
The Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC core directories and their
associated files are defined in the sections that follow. To go to a specific directory, click a
link below.

<project directory>topdirectory

Top-level project directory; user-defined name

 <project directory>/<component name>
Core release notes file

 <component name>/doc
Product documentation

 <component name>/example_design
Verilog and VHDL (or whichever, if it’s only one) design files

 <component name>/example_design/client
Support files for the example client loopback logic

 <component_name>/example_design/client/fifo
Files for the FIFO instances in the LocalLink client

 <component_name>/example_design/physical
Files that describe the physical interfaces of the Ethernet MAC

<component name>/implement
Implementation script files

 implement/results
Results directory, created after implementation scripts are run, and
contains implement script results

 <component name>/simulation
Test bench HDL (Verilog or VHDL)

 simulation/functional
Functional simulation scripts

 simulation/timing
Timing simulation scripts

http://www.xilinx.com

34 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 4: Detailed Example Design
R

<project directory>
The <project directory> contains all the CORE Generator project files.

<project directory>/<component name>
The <component name> directory contains the release notes file provided with the core,
which may include last-minute changes and updates.

<component name>/doc
The doc directory contains Ethernet MAC documentation. For detailed information about
the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC, see the Virtex-5 FPGA Embedded
Tri-Mode Ethernet MAC User Guide, available from
www.xilinx.com/bvdocs/userguides/ug194.pdf.

Table 4-1: Project Directory

Name Description

<project_dir>

<component_name>.xco As an output file, the XCO file is a log file
which records the settings used to generate
a particular instance of the Ethernet MAC
wrapper. An XCO file is generated by the
CORE Generator System for each core that
it creates in the current project directory.
An XCO file can also be used as an input to
the CORE Generator.

<component_name>_flist.txt A text file listing all the output files
produced when the wrapper and example
design files were generated in the CORE
Generator.

Back to Top

Table 4-2: Component Name Directory

Name Description

<project_dir>/<component_name>

v5_emac_readme.txt Virtex-5 FPGA Embedded Tri-Mode
Ethernet MAC Wrapper release notes text
file.

Back to Top

Table 4-3: Doc Directory

Name Description

<project_dir>/<component_name>/doc

v5_emac_ds550.pdf Virtex-5 FPGA Embedded Tri-Mode Ethernet
MAC Wrapper Data Sheet.

www.xilinx.com/bvdocs/userguides/ug194.pdf
http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 35
UG340 Getting Started Guide September 19, 2008

Directory Structure and File Descriptions
R

<component name>/example_design
The example design directory and its sub-directories contain the support files necessary
for a Verilog or VHDL implementation of the example design. See “Example Design,” page
43 for more information. The main Embedded Ethernet MAC Wrapper file and the
top-level file for the example design are contained in this directory.

<component name>/example_design/client
This directory contains the support files necessary for the example client loopback logic,
which is connected to the Ethernet MAC client interfaces. The 8-bit versions of the
following files are only present when an 8-bit client interface is selected. Similarly, the
16-bit versions are only present when a 16-bit client interface is selected.

v5_emac_gsg340.pdf Virtex-5 Embedded Tri-Mode Ethernet MAC
Wrapper Getting Started Guide.

Back to Top

Table 4-3: Doc Directory (Continued)

Name Description

Table 4-4: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design

<component_name>.v[hd] Ethernet MAC wrapper file.

<component_name>_block.v[hd] Block-level Ethernet MAC wrapper with
instantiation of physical interface circuitry.

<component_name>_locallink.v[hd] Top-level example design with a
LocalLink client interface provided by the
instantiation of the receive and transmit
FIFOs.

<component_name>_example_design.v[hd] Top-level example design providing a
simple loopback function and clock buffer
instantiation.

<component_name>_example_design.ucf UCF for the design. See Appendix C,
“Constraining the Example Design” for
more information.

Back to Top

Table 4-5: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design/client

address_swap_module_[8 | 16].v[hd] The client loopback instances this to
swap the source and destination
addresses of the incoming frames.

Back to Top

http://www.xilinx.com

36 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 4: Detailed Example Design
R

<component_name>/example_design/client/fifo
This directory contains the files for the FIFO instanced in the LocalLink client wrapper. For
more information about the FIFO see “10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO,” page
44.

<component_name>/example_design/physical
This directory contains the files that describe the physical interfaces of the Ethernet MAC.
Appropriate files are delivered by the CORE Generator depending on the options selected.

Table 4-6: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design/client/fifo

eth_fifo_[8 | 16].v[hd] The FIFO top level, which instantiates the
transmit and receive client FIFOs.

tx_client_fifo_[8 | 16].v[hd] The transmit client FIFO. Takes data from
the client in LocalLink format, stores it, and
sends it to the MAC.

rx_client_fifo_[8 | 16].v[hd] The receive client FIFO. Reads in and
stores data from the MAC before
outputting it to the client in LocalLink
format.

Back to Top

Table 4-7: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design/physical

gmii_if.v[hd] If GMII is selected on one or both Ethernet
MACs without the Advanced Clocking
option (Byte PHY).

gmii_byte_phy_if.v[hd] If GMII is selected on one or both Ethernet
MACs with the Byte PHY Advanced
Clocking option.

mii_if.v[hd] If MII is selected on one or both of the
Ethernet MACs.

mii_byte_phy_if.v[hd] If MII is selected on one or both Ethernet
MACs with the Byte PHY Advanced
Clocking option.

rgmii_if.v[hd] If RGMII version 1.3 is selected on one or
both of the Ethernet MACs.

rgmii_v2_0_if.v[hd] If RGMII version 2.0 is selected on one or
both of the Ethernet MACs.

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 37
UG340 Getting Started Guide September 19, 2008

Directory Structure and File Descriptions
R

<component name>/implement
The implement directory contains the core implementation script files.

gtp_dual_1000X.v[hd] If a Virtex-5 LXT or SXT device is targeted
and a SGMII or 1000Base-X PCS/PMA
interface is selected on one or both
Ethernet MACs, these files collectively
connect the RocketIO GTP transceivers to
the physical interface.

gtx_dual_1000X.v[hd] If a Virtex-5 FXT or TXT device is targeted
and an SGMII or 1000Base-X PCS/PMA
interface is selected on one or both
Ethernet MACs, these files collectively
connect the RocketIO GTX transceivers to
the physical interface.

rx_elastic_buffer.v[hd] If the Tri-speed SGMII interface and SGMII
Capabilities 10/100/1000 Mb/s (no clock
constraints required) options are selected
(Screen 2 of the GUI), the clock correction
has to be implemented in the fabric to
prevent buffer errors from occurring in
long frames at 10 Mbps. This file
implements a clock correction buffer using
a RAMB18.

Back to Top

Table 4-7: Example Design Directory (Continued)

Name Description

Table 4-8: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.bat A Windows batch file that processes the
example design through the Xilinx tool
flow.

implement.sh A Linux shell script that processes the
example design through the Xilinx tool
flow.

xst.scr The XST script file for the top-level
example design.

xst.prj The XST project file for the design; it
enumerates all the HDL files that need to
be synthesised.

Back to Top

http://www.xilinx.com

38 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 4: Detailed Example Design
R

implement/results
The results directory is created by the implement scripts and is used to run the example
design files and the Ethernet MAC wrapper file through the Xilinx implementation tools.
After these scripts are run, timing simulation files appear in the directory.

<component name>/simulation
The simulation directory and its sub-directories provide the files necessary to test a Verilog
or VHDL implementation of the example design.

Table 4-9: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

routed.v[hd] The back-annotated simprim based
Verilog or VHDL design. Used for timing
simulation.

routed.sdf The timing information for simulation is
contained in this file.

Back to Top

Table 4-10: Simulation Directory

Name Description

<project_dir>/<component_name>/simulation

demo_tb.v[hd] The Verilog or VHDL demonstration test
bench for the Ethernet MAC wrapper.

configuration_tb.v[hd] The configuration test bench is
instantiated in demo_tb.vhd. It provides
stimuli to configure the Ethernet MACs
via the selected management interface.

emac0_phy_tb.v[hd] The physical interface test bench for
EMAC0. This stimulates the receiver ports
and monitors the transmitter ports of the
EMAC0 physical interface. This is
instantiated in demo_tb.vhd and is only
present when EMAC0 is selected.

emac1_phy_tb.v[hd] The physical interface test bench for
EMAC1. This stimulates the receiver ports
and monitors the transmitter ports of the
EMAC1 physical interface. This is
instantiated in demo_tb.vhd and is only
present when EMAC1 is selected.

Back to Top

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 39
UG340 Getting Started Guide September 19, 2008

Directory Structure and File Descriptions
R

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

simulation/timing
The timing directory contains timing simulation scripts provided with the core.

Table 4-11: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

simulate_mti.do A ModelSim macro file that compiles the
example design sources and the structural
simulation model then runs the functional
simulation to completion.

wave_mti.do A ModelSim macro file that opens a wave
windows and adds interesting signals to it.
It is called used by the simulate_mti.do
macro file.

simulate_ncsim.sh An IUS script file that compiles the
example design sources and the structural
simulation model and then runs the
functional simulation to completion.

wave_ncsim.sv An IUS macro file that opens a wave
window and adds interesting signals to it.

simulate_vcs.sh VCS script file that compiles the Verilog
sources and runs the simulation to
completion.

vcs_commands.key The file sourced by VCS at the start of
simulation; it configures the simulator.

vcs_session.tcl VCS macro file that opens a wave window
and adds signals of interest. It is called by the
simulate_vcs.sh script file.

Back to Top

Table 4-12: Timing Directory

Name Description

<project_dir>/<component_name>/simulation/timing

simulate_mti.do A ModelSim macro file that compiles the
Verilog or VHDL timing model and demo
test bench then runs the timing simulation
to completion.

wave_mti.do A ModelSim macro file that opens a wave
windows and adds interesting signals to it.
It is called used by the simulate_mti.do
macro file.

http://www.xilinx.com

40 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 4: Detailed Example Design
R

Implementation and Test Scripts

Setting up for Simulation
The Xilinx UniSim and SmartModel libraries must be mapped into the simulator. If the
UniSim and SmartModel libraries are not set up for your environment, go to Answer
Record 15338 for assistance compiling Xilinx simulation models and for setting up the
simulator environment.

Virtex-5 Device Requirements

Virtex-5 device designs require either a Verilog LRM-IEEE 1364-2005 encryption-compliant
simulator or a SWIFT-compliant simulator.

• For a Verilog LRM-IEEE 1364-2005 encryption-compliant simulator, ModelSim v6.3c is
currently supported.

• For a SWIFT-compliant simulator, Cadence IUS v6.1 and Synopsys VCS 2006.06-SP1 are
currently supported.

Implementation Scripts for Timing Simulation
The implementation script, generated in the implement directory, is either a shell script or
batch file that processes the example design through the Xilinx tool flow.

<project_dir>/<component_name>/implement

Figure 4-1 shows a block diagram of the design.

Linux

<project_dir>/<component_name>/implement/implement.sh

Windows

<project_dir>/<component_name>/implement/implement.bat

simulate_ncsim.sh An IUS script file that compiles the Verilog
or VHDL timing model and demo test
bench and then runs the timing simulation
to completion.

wave_ncsim.sv An IUS macro file that opens a wave
window and adds interesting signals to it.

simulate_vcs.sh VCS script file that compiles the Verilog
timing model and runs the simulation to
completion.

vcs_commands.key The file sourced by VCS at the start of
simulation; it configures the simulator.

vcs_session.tcl VCS macro file that opens a wave window
and adds signals of interest. It is called by the
simulate_vcs.sh script file.

Back to Top

Table 4-12: Timing Directory (Continued)

Name Description

http://www.xilinx.com/support/answers/15338.htm
http://www.xilinx.com/support/answers/15338.htm
http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 41
UG340 Getting Started Guide September 19, 2008

Implementation and Test Scripts
R

The implement script performs the following steps:

1. The HDL example design is synthesised using XST.

2. Ngdbuild is run to produce an NGD file containing the entire design. A constraints file
is also used at this stage to constrain the clocks to operate at the correct speed for
Ethernet implementations. This file also contains constraints to control any clock
domain crossings present in the design and example pin placements where
appropriate.

For detailed information about the constraints files, see Appendix C, “Constraining
the Example Design.”

3. The design is placed-and-routed on the target device.

4. Static timing analysis is performed on the routed design using trce.

5. A bitstream is generated.

6. Netgen runs on the routed design to generate Verilog and VHDL netlists and timing
information in the form of SDF files.

The Xilinx tool flow generates several output and report files. These files are saved in the
following directory which is created by the implement script:

<project_dir>/<component_name>/implement/results

Test Scripts For Timing Simulation
The test script macro that automates the simulation of the test bench. The test scripts do the
following:

• Compile the gate-level netlist

• Compile the demonstration test bench

• Start a simulation of the test bench

• Open a Wave window and adds some signals of interest (wave_mti.do,
wave_ncsim.sv, vcs_session.tcl)

• Run the simulation to completion

For ModelSim

Verilog

<project_dir>/<component_name>/simulation/timing/simulate_mti.do

VHDL

<project_dir>/<component_name>/simulation/timing/simulate_mti.do

For IUS

Verilog

<project_dir>/<component_name>/simulation/timing/simulate_ncsim.sh

VHDL

<project_dir>/<component_name>/simulation/timing/simulate_ncsim.sh

http://www.xilinx.com

42 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 4: Detailed Example Design
R

For VCS

Verilog

<project_dir>/<component_name>/simulation/timing/simulate_vcs.sh

Test Scripts For Functional Simulation
The test script that automates the functional simulation of the test bench. The test scripts
do the following:

• Compile the Ethernet MAC wrapper

• Compile the example design files

• Compile the demonstration test bench

• Start a simulation of the test bench with no timing information

• Open a Wave window and adds some signals of interest (wave_mti.do,
wave_ncsim.sv,vcs_session.tcl)

• Run the simulation to completion

For ModelSim

Verilog

<project_dir>/<component_name>/simulation/functional/simulate_mti.do

VHDL

<project_dir>/<component_name>/simulation/functional/simulate_mti.do

For IUS

Verilog

<project_dir>/<component_name>/simulation/functional/simulate_ncsim.sh

VHDL

<project_dir>/<component_name>/simulation/functional/simulate_ncsim.sh

For VCS

Verilog

<project_dir>/<component_name>/simulation/functional/simulate_vcs.sh

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 43
UG340 Getting Started Guide September 19, 2008

Example Design
R

Example Design

HDL Example Design

The top-level example design for the Ethernet MAC wrapper is defined in the following
files:

Verilog

<project_dir>/<component_name>/example_design/
<component_name>_example_design.v

VHDL

<project_dir>/<component_name>/example_design/
<component_name>_example_design.vhd

The HDL example design contains the following:

Figure 4-1: HDL Example Design

Embedded Ethernet
MAC Wrapper

FPGA
Fabric

Clock
Circuitry

Physical I/F

(GMII/MII,
RGMII,

or RocketIO

Physical I/F

(GMII/MII,
RGMII,

or
RocketIO)

EMAC1

Host
Interface

EMAC0

Embedded
Ethernet MAC

Physical
Interface

component_name_block

component_name_example_design

Address
Swap

Module

Address
Swap

Module

10M/100M/1G
Ethernet FIFO

10M/100M/1G
Ethernet FIFO

Client
Interface

component_name_locallink

Tx Client
FIFO

Rx Client
FIFO

Tx Client
FIFO

Rx Client
FIFO

Lo
ca

lL
in

k
In

te
rf

ac
e

Lo
ca

lL
in

k
In

te
rf

ac
e

http://www.xilinx.com

44 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 4: Detailed Example Design
R

• An instance of the Ethernet MAC wrapper

• An instance of the block level EMAC wrapper containing GMII/MII, RGMII, SGMII or
1000Base-X PCS/PMA interface logic

• An instance of the LocalLink wrapper containing transmit and receive LocalLink FIFOs

• An instance of the top-level example design containing an address swap module, which
loops the received data back to the transmitter. Clock management logic including
DCMs and Global Clock Buffer instances where required, is also instantiated. This
allows the functionality of the core to be demonstrated either using a simulation
package, as discussed in this guide, or in hardware, if placed on a suitable board

10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO
The 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO is defined in the following files:

Verilog

<project_dir>/<component_name>/example_design/client/fifo/

eth_fifo_[8|16|8,16].v

<project_dir>/<component_name>/example_design/client/fifo/

tx_client_fifo_[8|16|8,16].v

<project_dir>/<component_name>/example_design/client/fifo/

rx_client_fifo_[8|16|8,16].v

VHDL

<project_dir>/<component_name>/example_design/client/fifo/

eth_fifo_[8|16|8,16].vhd

<project_dir>/<component_name>/example_design/client/fifo/

tx_client_fifo_[8|16|8,16].vhd

<project_dir>/<component_name>/example_design/client/fifo/

rx_client_fifo_[8|16|8,16].vhd

The 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO contains an instance of tx_client_fifo to
connect to the Ethernet MAC client side transmitter interface, and an instance of the
rx_client_fifo to connect to the Ethernet MAC client receiver interface. Both transmit
and receive FIFO components implement a LocalLink user interface, through which the
frame data can be read and written.

Figure 4-2 illustrates a simple frame transfer across the LocalLink. For more information
about the FIFO, see Appendix A, “Using the Client Side FIFO.”

Figure 4-2: Frame Transfer across LocalLink Interface

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4 5 6 7

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 45
UG340 Getting Started Guide September 19, 2008

Example Design
R

rx_client_fifo

The rx_client_fifo is built around 2 Dual Port block RAMs, providing a total memory
capacity of 4096 bytes of frame data. The receive FIFO will write in data received through
the Ethernet MAC. If the frame is marked as good, that frame will be presented on the
LocalLink interface for reading by the user, (in this case the tx_client_fifo module). If
the frame is marked as bad, that frame is dropped by the receive FIFO.

If the receive FIFO memory overflows, the frame currently being received will be dropped,
regardless of whether it is a good or bad frame, and the signal rx_overflow will be asserted.
Situations in which the memory may overflow are:

• The FIFO may overflow if the receiver clock is running at a faster rate than the
transmitter clock or if the inter-packet gap between the received frames is smaller than
the inter-packet gap between the transmitted frames. If this is the case, the Tx fifo
cannot read data from the rx fifo as fast as it is being received.

• The FIFO size of 4096 bytes limits the size of the frames that it can store without error. If
a frame is larger than 4000 bytes, the FIFO can overflow and data will be lost. For this
reason, it is recommended that the example design not be used with the Ethernet MAC
in jumbo frame mode for frames larger than 4000 bytes.

tx_client_fifo

The tx_client_fifo is built around 2 Dual Port block RAMs, providing a total memory
capacity of 4096 bytes of frame data. When a full frame has been written into the transmit
FIFO, the FIFO presents data to the MAC transmitter. On receiving the acknowledge signal
from the Ethernet MAC, the rest of the frame is transmitted providing there is no
retransmit request output by the Ethernet MAC. If a retransmission request is received, the
frame is queued for retransmission.

If the FIFO memory fills to capacity, the dst_rdy_out_n signal is used to halt the LocalLink
interface writing data until space becomes available in the FIFO. If the FIFO memory fills
but no full frames are available for transmission, that is, if a frame larger than 4000 bytes is
written into the FIFO, the FIFO asserts tx_overflow and continues to accept the rest of the
frame from the user. The overflow frame is dropped by the FIFO to ensure that the
LocalLink interface does not lock up.

http://www.xilinx.com

46 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 4: Detailed Example Design
R

Address Swap Module

The address swap module is described in the following files:

Verilog

<project_dir>/<component_name>/example_design/client/
address_swap_module_[8|16|8,16].v

VHDL

<project_dir>/<component_name>/example_design/client/
address_swap_module_[8|16|8,16].vhd

The address swap module takes frame data from the Ethernet MAC LocalLink client
interface. The module swaps the destination and source addresses of each frame (as shown
in Figure 4-3) to ensure that the outgoing frame destination address matches the source
address of the link partner. The module transmits the frame control signals with an equal
latency to the frame data.

Physical Interface
An appropriate Physical Interface is provided for each selected EMAC0/EMAC1. This
connects the physical interface of the Ethernet MAC block to the I/O of the FPGA, and as
required, contains the following components:

• For GMII/MII, this component contains Input/Output block (IOB) buffers and IOB
flip-flops.

• For RGMII, this component contains IOB buffers and IOB Double-Data Rate flip-flops.
IODELAYs are also instantiated on the receiver data input. These are configured in
FIXED mode and align the received data with the clock. If RGMII v2.0 is selected, an
IODELAY is used to delay the transmitter clock output by the 2ns required by the
specification.

• For 1000BASE-X PCS/PMA or SGMII, this component instantiates and connects the
RocketIO transceivers.

Figure 4-3: Modification of Frame Data by Address Swap Module

rx_ll_data_in

rx_ll_sof_in_n

rx_ll_eof_in_n

rx_ll_data_out

rx_ll_sof_out_n

rx_ll_eof_out_n

6 Byte SA 6 Byte DA DATAL/T FCS

rx_ll_src_rdy_in_n

rx_ll_src_rdy_out_n

rx_ll_dst_rdy_in_n

6 Byte DA DATAL/T FCS6 Byte SA

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 47
UG340 Getting Started Guide September 19, 2008

Demonstration Test Bench
R

Demonstration Test Bench

Test Bench Functionality
The demonstration test bench, illustrated in Figure 4-4, is a simple VHDL or Verilog
program to exercise the example design and the core itself.

The demonstration test bench is defined in the following files:

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

<project_dir>/<component_name>/simulation/configuration_tb.v

<project_dir>/<component_name>/simulation/emac0_phy_tb.v

<project_dir>/<component_name>/simulation/emac1_phy_tb.v

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

<project_dir>/<component_name>/simulation/configuration_tb.vhd

<project_dir>/<component_name>/simulation/emac0_phy_tb.vhd

<project_dir>/<component_name>/simulation/emac1_phy_tb.vhd

The top-level test bench (demo_tb.vhd, demo_tb.v) consists of the following:

• Clock generators

Figure 4-4: Demonstration Test Bench

Example Design

Monitor

Management

Stimulus

Management
 & Reset Testbench control

demo_tb

emac1_phy_tb

configuration_tb

Monitor

Stimulus

emac0_phy_tb

EMAC1
 RX

EMAC1
 TX

EMAC0
 RX

EMAC0
 TX

http://www.xilinx.com

48 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 4: Detailed Example Design
R

• A control mechanism to manage the interaction of management, stimulus, and monitor
blocks.

The configuration test bench (configuration_tb.vhd, configuration_tb.v) consists of
the following:

• A management block to exercise the host or DCR interfaces (if selected) or to configure
the Ethernet MACs through the configuration vector

• Semaphores to indicate configuration status to the top level test bench

The physical layer test benches (emac0/1_phy_tb.vhd, emac0/1_phy_tb.v) each consist
of the following:

• A stimulus block, which connects to the physical receiver interface of the example
design

• A monitor block to check data returned through the physical transmitter interface

Demonstration Test Bench Tasks

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The selected Ethernet MACs are configured through the management or configuration
interface, setting up the MDC clock frequency, disabling auto-negotiation in SGMII and
1000Base-X PCS/PMA modes, and disabling flow control.

• The configuration test bench then sets the speed of the selected Ethernet MACs.

• If EMAC0 is selected to run at 1000 Mbps or in Tri-Speed mode, the following four
frames are pushed into the EMAC0 receiver interface at 1 Gbps:

+ The first frame is a minimum length frame

+ The second frame is a type frame

+ The third frame is an errored frame

+ The fourth frame is a padded frame

• If EMAC1 is selected to run at 1000 Mbps or in Tri-Speed mode, the same four frames
are applied to the EMAC1 receiver interface simultaneously.

• The frames received at the transmitter of each Ethernet MAC interface are checked
against the stimulus frames to ensure data is the same. The monitor process takes into
account the source/destination address field and FCS modifications resulting from the
address swap module.

• If applicable, the selected Ethernet MACs are configured through the management
interface to run at 100 Mbps. The same four frames are then sent to the receiver interface
and checked against the stimulus frames.

• If applicable, the selected Ethernet MACs are then configured through the management
interface to run at 10 Mbps. The same four frames are then sent to the receiver interface
and checked against the stimulus frames.

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 49
UG340 Getting Started Guide September 19, 2008

Demonstration Test Bench
R

Changing the Test Bench

Changing Frame Data

The contents of the frame data passed into the Ethernet MAC receivers can be modified by
changing the DATA fields for each frame defined in the test bench. More frames can be
added by defining a new frame of data.

Changing Frame Error Status

Errors can be inserted into any of the pre-defined frames by changing the ERROR field to
‘1’ in any column of that frame. When an error is introduced into a frame, the
BAD_FRAME field for that frame must be set in order to disable the monitor checking for
that frame. The error currently written into the third frame can be removed by setting all
ERROR fields for the frame to ‘0’ and unsetting the BAD_FRAME field.

Changing the Tri-Mode Ethernet MAC Configuration

The configuration of the Ethernet MACs used in the demonstration test bench can be
altered.

Caution: Certain Ethernet MAC configurations cause the test bench either to result in
failure or cause processes to run indefinitely. Be sure to determine which configurations
can be used safely with the test bench.

The Ethernet MACs can be reconfigured by adding more steps in the test bench
management process to write new configurations to the Ethernet MAC.

http://www.xilinx.com

50 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Chapter 4: Detailed Example Design
R

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 51
UG340 Getting Started Guide September 19, 2008

R

Appendix A

Using the Client Side FIFO

The example design provided with the Ethernet MAC wrapper contains a LocalLink FIFO
used to interface to the client side of the Ethernet MAC. The source code for the FIFO is
provided and can be used and adjusted for user applications.

The 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO consists of independent transmit and
receive FIFOs embedded in a top-level wrapper. Figure A-1 shows how the FIFO fits into a
typical implementation. Each FIFO is built around 2 Dual Port block RAMs providing a
memory capacity of 4096 bytes in each FIFO.

Overview of LocalLink Interface
Data is transferred on the LocalLink interface from source to destination, with the flow
governed by the four active low control signals sof_n, eof_n, src_rdy_n, and
dst_rdy_n. The flow of data is controlled by the src_rdy_n and dst_rdy_n signals.
Only when these signals are asserted simultaneously is data transferred from source to
destination. The individual packet boundaries are marked by the sof_n and eof_n signals.
For more information on the LocalLink interface, see Xilinx Application Note XAPP691.
Figure A-2 shows the transfer of an 8-byte frame.

Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation

EMAC Wrapper

User Logic
EMAC PHY

Interface

GMII/MII, RGMII, SGMII,
100Base-X PCS/PMA

10M/100M/1G
Ethernet MAC FIFO

Transmit FIFO

Receive FIFO

Local Link Interface Client Interface

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp691.pdf

52 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix A: Using the Client Side FIFO
R

Figure A-3 illustrates frame transfer of a 5-byte frame, where both the src_rdy_n and
dst_rdy_n signals are used to control the flow of data across the interface.

Receive FIFO Operation
The receive FIFO takes data from the client interface of the Ethernet MAC core and
converts it into LocalLink format. See the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC
User Guide for a description of the Ethernet MAC receive client interface. If the frame is
marked as good by the Ethernet MAC, that frame is presented on the LocalLink interface
for reading by the user. If the frame is marked as bad, that frame is dropped by the FIFO.

LocalLink Interface
Table A-1 describes the receive FIFO LocalLink interface.

Figure A-2: Frame Transfer across LocalLink Interface

Figure A-3: Frame Transfer with Flow Control

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4 5 6 7

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4

Table A-1: Receive FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

rx_ll_clock Input N/A Read clock for LocalLink
interface

rx_ll_reset Input rx_ll_clock Synchronous reset

rx_ll_data_out[7:0] Output rx_ll_clock Data read from FIFO

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 53
UG340 Getting Started Guide September 19, 2008

Transmit FIFO Operation
R

If the receive FIFO memory overflows, the frame currently being received is dropped,
regardless of its status (good or bad), and the rx_overflow is asserted. Frames continue to
be dropped until space is made available in the FIFO by reading data out. The FIFO status
signal indicates the occupancy of the FIFO.

Transmit FIFO Operation
The transmit FIFO accepts frames in LocalLink format and stores them in block RAM for
transmission through the EMAC. When a full frame is written into the transmit FIFO, the
FIFO presents the data to the Ethernet MAC transmitter client interface. On receiving the
acknowledge signal from the Ethernet MAC, the rest of the frame is transmitted. For a
description of the Ethernet MAC transmit client interface, see the Virtex-5 FPGA Embedded
Tri-Mode Ethernet MAC User Guide.

LocalLink Interface
Table A-2 defines the transmit FIFO LocalLink interface signals.

In half-duplex operation, if the client interface collision signal is asserted by the EMAC, the
current frame transmission is terminated. If the retransmit signal is also asserted, the FIFO
re-queues the frame for transmission.

If the FIFO memory fills to capacity, the dst_rdy_out_n signal is used to halt the LocalLink
interface writing in data until space becomes available in the FIFO. If the FIFO memory

rx_ll_sof_out_n Output rx_ll_clock Start of frame indicator

rx_ll_eof_out_n Output rx_ll_clock End of frame indicator

rx_ll_src_rdy_out_n Output rx_ll_clock Source ready indicator

rx_ll_dst_rdy_in_n Input rx_ll_clock Destination ready indicator

rx_fifo_status[3:0] Output rx_ll_clock FIFO memory status

Table A-1: Receive FIFO LocalLink Interface (Continued)

Signal Direction
Clock

Domain
Description

Table A-2: Transmit FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

tx_ll_clock Input N/A Write clock for LocalLink interface

tx_ll_reset Input tx_ll_clock Synchronous reset

tx_ll_data_in[7:0] Input tx_ll_clock Write data to be sent to transmitter

tx_ll_sof_in_n Input tx_ll_clock Start of frame indicator

tx_ll_eof_in_n Input tx_ll_clock End of frame indicator

tx_ll_src_rdy_in_n Input tx_ll_clock Source ready indicator

tx_ll_dst_rdy_out_n Output tx_ll_clock Destination ready indicator

tx_fifo_status[3:0] Output tx_ll_clock FIFO memory status

http://www.xilinx.com

54 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix A: Using the Client Side FIFO
R

fills to capacity but no frames are available for transmission, that is, if a frame larger than
4000 bytes is written into the FIFO, the FIFO asserts the tx_overflow signal and continues
to accept the rest of the frame from the user. The overflow frame is dropped by the FIFO to
ensure that the LocalLink interface does not lock up.

Clock Requirements
The FIFO is designed to work with the client clocks running at speeds in the range of
125 MHz to 1.25 MHz. The rx_ll_clock should be no slower than the clock on the
receiver client interface and the tx_ll_clock should be no slower than the clock on the
transmitter client interface. For this reason, is suggested that the rx_ll_clock and
tx_ll_clock are always 125 MHz or faster.

User Interface Data Width Conversion
Conversion of the user interface 8-bit data path to a 16, 32, 64, or 128 bit data path can be
made by connecting the LocalLink interface directly to the Parameterizable LocalLink
FIFO (XAPP691).

http://www.xilinx.com/support/documentation/application_notes/xapp691.pdf
http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 55
UG340 Getting Started Guide September 19, 2008

R

Appendix B

Ethernet MAC Clocking

The Ethernet MAC example design provides clocking schemes for each supported
interface. This chapter provides details about the supplied clocking schemes. Clocking is
implemented in the <component_name>_example_design.v/vhd file. For more
information about Ethernet MAC clock management, see the Virtex-5 FPGA Embedded
Tri-Mode Ethernet MAC User Guide. In the following examples, # refers to the Ethernet MAC
number (EMAC0 or EMAC1).

Single-Speed Clocking

1000Base-X PCS/PMA: Virtex-5 LXT and SXT Devices
In PCS/PMA and SGMII modes (Figure B-1) the user supplies a high quality differential
clock to the RocketIO GTP transceiver. This is input to the wrappers on the CLK_DS port.
This clock can be shared between multiple instantiations of the wrappers.

A 125 MHz clock is used to drive the transmit and receive sections of the wrappers. This is
supplied via a BUFG and input on the CLK125 port. The REFCLKOUT output from the
transceiver is made available to the user and can be used to drive CLK125. This clock can
be shared between multiple instantiations of the wrappers.

http://www.xilinx.com

56 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix B: Ethernet MAC Clocking
R

Figure B-1: PCS/PMA/SGMII Clocking at 1000 Mbps: Virtex-5 LXT and SXT

BUFG

CLK125

CLK125_OUT

IBUFDS

MGTCLK_P
MGTCLK_N

CLK_DS

<component_name>_example_design

LocalLink/Block-level wrapper

Ethernet MAC

RocketIO GTP
Transceiver

PHYEMAC#GTXCLK

REFCLKOUT

CLKIN

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 57
UG340 Getting Started Guide September 19, 2008

Single-Speed Clocking
R

1000Base-X PCS/PMA: Virtex-5 FXT and TXT Devices
The RocketIO transceiver in Virtex-5 FXT and TXT devices requires an additional 62.5
MHz clock input. This drives the transceiver 2-byte internal data path. This clock should
be generated from REFCLKOUT via a DCM as illustrated in Figure B-2.

Figure B-2: PCS/PMA/SGMII Clocking at 1000 Mbps: Virtex-5 FXT and TXT Devices

CLK125

CLK125_OUT

IBUFDS

MGTCLK_P
MGTCLK_N

CLK_DS

DCM

CLKIN

CLKFB CLK0

BUFG

BUFG

<component_name>_example_design

locallink/block level wrapper

CLKDV_DIVIDE=2.0

CLKDV CLK62_5

RocketIO GTX
Transceiver

Ethernet MAC

PHYEMAC#GTXCLK

REFCLKOUT

CLKIN

http://www.xilinx.com

58 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix B: Ethernet MAC Clocking
R

PCS/PMA in Overclocking Mode:
Virtex-5 LXT, SXT, FXT, and TXT Devices

When operating at 2000 Mbps using the 16-bit client mode (Figure B-3) an additional
250 MHz clock (CLK250) is input to the wrappers. This is used to clock the RocketIO
transceiver and the physical side of the Ethernet MAC. CLK250 is generated from the
REFCLKOUT output of the transceiver through a DCM and can be shared between multiple
instantiations of the wrappers.

As in the 1000Base-X PCS/PMA scheme in Figure B-1, the client logic is driven by the
125 MHz clock supplied on the CLK125 port. This can be shared between multiple
instantiations of the wrappers.

Figure B-3: PCS/PMA Clocking at 2000 Mbps

CLKIN

REFCLKOUT

CLK125

CLK125_OUT

IBUFDS

MGTCLK_P
MGTCLK_N

CLK_DS

CLK250

DCM

CLKIN

CLKFB CLK0

CLKFX
BUFG

BUFG

PHYEMAC#GTXCLK

<component_name>_example_design

CLKFX_MULTIPLY = 2

LocalLink/Block-level wrapper

Ethernet MAC

RocketIO GTX
 Transceiver

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 59
UG340 Getting Started Guide September 19, 2008

Multi-Speed Clocking
R

GMII/RGMII at 1000 Mbps
Figure B-4 shows the clocking for a parallel interface (GMII or RGMII) operating at 1000 Mbps.
TX_CLK_# clocks the transmitter circuitry and is driven by a high quality 125 MHz clock. This
can be shared between multiple instantiations of the wrappers.

The receiver is driven by the input clock from the PHY chip via an IDELAY element. The
IDELAY is used to align the clock to the data inputs as they enter the FPGA. The delayed
clock is routed through a BUFG (or BUFR) and cannot be shared between multiple
Ethernet MACs.

Multi-Speed Clocking
This section illustrates the clocking for the Ethernet MAC wrapper when operating at
multiple speeds. For most interfaces, the Ethernet MAC supplies a clock output that can be
used to drive the client logic at all speeds. The frequency of the clock output is dependent
on the setting of the speed selection bits in the Ethernet MAC Mode Configuration
Register.

For the implementation of some interfaces the Ethernet MAC EMAC#SPEEDIS10100 output
is exposed at the wrapper interface. This is asserted when the Ethernet MAC is operating
at 10 or 100 Mbps. This signal can be used to select between different clock inputs
depending on the current speed of operation. For information about the Ethernet MAC
signals and register definitions please see the Virtex-5 FPGA Embedded Tri-Mode Ethernet
MAC User Guide.

Figure B-4: GMII/RGMII Clocking at 1000 Mbps

BUFG

TX_CLK_#

BUFG

GMII_RX_CLK_#
RGMII_RXC_#

GMII_RX_CLK_#
RGMII_RXC_#

GTX_CLK

Ethernet MAC

<component_name>_example_design

locallink/block level wrapper

IDELAY

http://www.xilinx.com

60 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix B: Ethernet MAC Clocking
R

SGMII at Multiple Speeds: Virtex-5 LXT and SXT Devices
For SGMII operation at multiple speeds the user supplies the high quality differential clock
(CLK_DS) and 125 MHz reference clock (CLK125) described in Figure B-1. These are used to
clock the RocketIO transceiver and the physical side of the Ethernet MAC and can be
shared between multiple instantiations of the wrappers.

In addition a 1.25/12.5/125 MHz client clock (CLIENT_CLK_#) must be supplied. This is
used to drive the client logic at all 3 speeds. The EMAC#CLIENTTXCLIENTCLKOUT output
from the EMAC is made available to the user on the CLIENT_CLK_OUT_# port and this is
used to drive CLIENT_CLK_#. This clock cannot be shared between multiple Ethernet
MACs unless they all operate at the same speed. Figure B-5 shows the supplied clocking
scheme.

Figure B-5: SGMII Clocking at 10/100/1000 Mbps: Virtex-5 LXT and SXT Devices

<component_name>_example_design

BUFG

CLK125

CLK125_OUT

IBUFDS

MGTCLK_P
MGTCLK_N

CLK_DS

BUFG

CLIENT_CLK_#

CLIENT_CLK_OUT_#

LocalLink/Block-level wrapper

Ethernet MAC

RocketIO GTP
Transceiver

EMAC#CLIENTTXCLIENTCLKOUT

REFCLKOUT

CLKIN

PHYEMAC#GTXCLK

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 61
UG340 Getting Started Guide September 19, 2008

Multi-Speed Clocking
R

SGMII at Multiple Speeds: Virtex-5 FXT and TXT Devices
For SGMII implementation in Virtex-5 FXT and TXT devices the user supplies the
high-quality differential clock (CLK_DS) and 125 MHz reference clock (CLK125). These are
used to clock the RocketIO GTX transceiver and the physical side of the Ethernet MAC and
can be shared between multiple instantiations of the wrappers.

The RocketIO GTX transceiver also requires a 62.5MHz clock input. This drives the
transceiver 2-byte internal data path. This clock should be generated from REFCLKOUT
via a DCM. In addition a 1.25/12.5/125 MHz client clock (CLIENT_CLK_#) must be
supplied. This is used to drive the client logic at all 3 speeds. The
EMAC#CLIENTTXCLIENTCLKOUT output from the EMAC is made available to the user
on the CLIENT_CLK_OUT_# port and this is used to drive CLIENT_CLK_#. This clock
cannot be shared between multiple Ethernet MACs unless they all operate at the same
speed. Figure B-6 shows the supplied clocking scheme.

Figure B-6: SGMII Clocking at 10/100/1000 Mbps: Virtex-5 FXT and TXT Devices

<component_name>_example_design

BUFG

CLK125

CLK125_OUT

IBUFDS

MGTCLK_P
MGTCLK_N

CLK_DS

CLIENT_CLK_#

CLIENT_CLK_OUT_#

DCM

CLKIN

CLKFB CLK0

CLKDV_DIVIDE=2.0

CLKDV

BUFG

BUFG

CLK62_5

locallink/block level wrapper

RocketIO GTX
Transceiver

Ethernet MAC

REFCLKOUT

EMAC#CLIENTTXCLIENTCLKOUT

CLKIN

http://www.xilinx.com

62 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix B: Ethernet MAC Clocking
R

GMII/MII/RGMII at Multiple Speeds
There are a variety of clocking schemes available when using a parallel PHY interface at
multiple speeds. Figure B-7 and Figure B-8 show the default method, where the user
supplies 1.25/12.5/125 MHz clocks for the transmit and receive client interfaces and
2.5/25/125 MHz clocks for the physical interface. The signals are generated from the clock
outputs of the Ethernet MAC.

Because this method uses a large amount of clocking resources, Xilinx recommends that
you use the clock enable or Byte PHY methods shown in Figure B-9, Figure B-10, and
Figure B-11.

Figure B-7: GMII/RGMII Clocking at 10/100/1000 Mbps

BUFG

BUFG

EMAC#CLIENTRXCLIENTCLKOUT

EMAC#CLIENTTXCLIENTCLKOUT

EMAC#PHYTXGMIIMIICLKOUT

TX_CLIENT_CLK_OUT_#

TX_CLIENT_CLK_#

RX_CLIENT_CLK_OUT_#

RX_CLIENT_CLK_#

TX_PHY_CLK_OUT_#

TX_PHY_CLK_#

GMII_RX_CLK_#
RGMII_RXC_#

BUFG (or BUFR)

GMII_RX_CLK_#
RGMII_RXC_#

PHYEMAC#GTXCLK

locallink/block level wrapper

BUFG (or BUFR)

TX Physical
Clock
Domain

RX Physical
Clock
Domain

TX Client
Clock
Domain

RX Client
Clock
Domain

<component_name>_example_design

PHYEMAC#MIITXCLK MII_TX_CLK_#
(not RGMII)

IDELAY

Ethernet MAC

GTX_CLK_#

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 63
UG340 Getting Started Guide September 19, 2008

Multi-Speed Clocking
R

Figure B-8: MII Clocking at 10/100 Mbps

BUFG

BUFG

TX_CLIENT_CLK_OUT_#

TX_CLIENT_CLK_#

RX_CLIENT_CLK_OUT_#

RX_CLIENT_CLK_#

TX_PHY_CLK_#

BUFG (or BUFR)

locallink/block level wrapper

BUFG (or BUFR)

TX Physical
Clock
Domain

RX Physical
Clock
Domain

TX Client
Clock
Domain

RX Client
Clock
Domain

<component_name>_example_design

MII_RX_CLK_# MII_RX_CLK_#

MII_TX_CLK_#

Ethernet MAC

EMAC#CLIENTTXCLIENTCLKOUT

EMAC#CLIENTRXCLIENTCLKOUT

http://www.xilinx.com

64 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix B: Ethernet MAC Clocking
R

GMII/MII at Multiple Speeds with Clock Enable
Clock enable mode is used to reduce the amount of clocking resources that are used when
running at multiple speeds with a parallel interface (Figure B-9). In this mode the
transmitter clock is supplied from a high quality 125 MHz reference clock (GTX_CLK_#) at
1000 Mbps and from the 2.5/25 MHz TX input clock from the PHY (MII_TX_CLK_#) at
10/100 Mbps. The receiver is clocked by the 2.5/25/125 MHz receiver clock from the PHY
(GMII/MII_RX_CLK_#). In GMII mode an IDELAY element is also used to align the clock to
the data inputs as they enter the FPGA.

The clock enable outputs (tx_enable_#_i and rx_enable_#_i) are used by the 8-bit
client logic in order to maintain the correct data rate through the system. At 1000 Mbps the
clock enables are held high. At slower speeds the clock enables are high on each alternate
clock cycle. This gives a data throughput of 100 Mbps on the 25 MHz clock and 10 Mbps on
the 2.5 MHz clock.

If the MII interface is used (10/100 Mbps only) the BUFGMUX is replaced by a BUFG with
MII_TX_CLK_# as its input. It should be noted that, together with the receiver clock, the
transmitter clock must still be constrained to run at 125 MHz even if the design does not
operate at 1000Mbps.

Figure B-9: GMII/MII Clocking at 10/100/1000 Mbps with Clock Enables

BUFGMUX

EMAC#CLIENTRXCLIENTCLKOUT

EMAC#CLIENTTXCLIENTCLKOUT

GMII_RX_CLK_#
MII_RX_CLK_#

TX_CLK_#

GMII_RX_CLK_#
MII_RX_CLK_#

BUFG

GTX_CLK_#

MII_TX_CLK_#

EMAC#SPEEDIS10100

tx_enable_#_i

rx_enable_#_i

1

0

<component_name>_example_design

TX Clock
Domain

RX Clock
Domain

LocalLink/Block-level wrapper

Ethernet MAC

IDELAY

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 65
UG340 Getting Started Guide September 19, 2008

Multi-Speed Clocking
R

RGMII at Multiple Speeds with Clock Enable
Figure B-10 shows the clocking scheme used when running at multiple speeds with the
RGMII interface. In this case, the transmit clock runs at 2.5, 25, or 125 MHz depending on
the speed of operation. The TX_CLK_OUT_# output carries the
EMAC#CLIENTTXCLIENTCLKOUT output from the Ethernet MAC and is used to drive the
transmitter input clock (TX_CLK_#).

The receiver is clocked by the input clock from the PHY through an IDELAY and a BUFG.
The IDELAY element is used to align the clock to the data inputs as they enter the FPGA.
Clock enables are used to control the data throughput at the client interface.

GMII/MII at Multiple Speeds with Byte PHY
An alternative to clock enable is to use Byte PHY mode, illustrated in Figure B-11. This has
advantages for MII operation at 10/100 Mbps as the transmit and receive clocks do not
need to be constrained to run at 125 MHz. In addition the client circuitry does not need to
be clock enabled.

When running at all three speeds, the transmitter circuitry is driven by the 125 MHz
reference clock at 1000 Mbps and by the MII_TX_CLK_# input from the PHY at slower
speeds. However, at the slower speeds the frequency of MII_TX_CLK_# is divided by 2. A
similar setup is used for the receiver circuitry. If the design does not run at 1000 Mbps, the
BUFG MUXs are replaced by BUFGs that take the divided MII_TX_CLK_# and MII_RX_CLK
signals as inputs, as illustrated in Figure B-12.

Figure B-10: RGMII Clocking at 10/100/1000 Mbps with Clock Enable

BUFG

EMAC#CLIENTRXCLIENTCLKOUT

EMAC#CLIENTTXCLIENTCLKOUT

RGMII_RXC_#

TX_CLK_#

BUFG

tx_enable_#_i

rx_enable_#_i

TX_CLK_OUT_# EMAC#CLIENTTXCLIENTCLKOUT

RGMII_RXC_#

PHYEMAC#GTXCLKGTX_CLK_#

<component_name>_example_design

TX Clock
Domain

RX Clock
Domain

LocalLink/Block-level wrapper

Ethernet MAC

IDELAY

http://www.xilinx.com

66 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix B: Ethernet MAC Clocking
R

Figure B-11: GMII Clocking at 10/100/1000 Mbps with Byte PHY

BUFGMUX

TX_CLK_#

GTX_CLK_#

MII_TX_CLK_#

EMAC#SPEEDIS10100

BUFGMUX

D Q

DQ

0

1

1

0

<component_name>_example_design

GMII_RX_CLK_#

GMII_RX_CLK_#

TX Clock
Domain

RX Clock
Domain

LocalLink/Block-level wrapper

Ethernet MAC

IDELAY

Figure B-12: MII Clocking at 10/100 Mbps with Byte PHY

BUFG
TX_CLK_#

MII_TX_CLK_#

D Q

DQ

<component_name>_example_design

MII_RX_CLK_#

MII_RX_CLK_#

TX Clock
Domain

RX Clock
Domain

BUFG

LocalLink/Block-level wrapper

Ethernet MAC

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 67
UG340 Getting Started Guide September 19, 2008

R

Appendix C

Constraining the Example Design

An example UCF file, separated into three sections, is provided with the HDL example
design, and provides examples of constraint requirements for the block, LocalLink, and
example_design levels. In all the examples, (#) represents the Ethernet MAC number
(EMAC0 or EMAC1).

Block Level Constraints
The block level UCF file (<component_name>_block.ucf) contains the constraints for the
clocks in the design. For more information on the clocking schemes used for the various
physical interfaces please see Appendix B, “Ethernet MAC Clocking.”

PCS/PMA/SGMII Clock Constraints
The following constraints must be used with a RocketIO transceiver. This constrains the
Ethernet MAC input clock to run at 125MHz.

125MHz clock input from BUFG
NET "CLK125" TNM_NET = "clk_gtp";
TIMEGRP "<component_name>_gtp_clk" = "clk_gtp";
TIMESPEC "TS_<component_name>_gtp_clk" = PERIOD
"<c_component_name>_gtp_clk" 7700 ps HIGH 50 %;

If SGMII is selected and the device is to operate at 10/100/1000 Mbps, the CLIENT_CLK_#
input must be constrained to run at 125MHz.

EMAC# Tri-speed clock input from BUFG
NET "CLIENT_CLK_#" TNM_NET = "clk_client#";
TIMEGRP "<component_name>_gtp_clk_client#" = "clk_client#";
TIMESPEC "TS_<component_name>_gtp_clk_client#" = PERIOD
"<component_name>_gtp_clk_client#" 7700 ps HIGH 50 %;

When the Ethernet MAC is used in overclocking mode (Client Interface Width = 16-bit)
then the CLK250 input should be constrained to run at 250MHz.

250MHz clock input from DCM
NET "CLK250" TNM_NET = "clk_2x";
TIMEGRP "<component_name>_gtp_clk_2x" = "clk_2x";
TIMESPEC "TS_<component_name>_gtp_clk_2x" = PERIOD
"<component_name>_gtp_clk_2x" 3700 ps HIGH 50 %;

If a Virtex-5 LXT or SXT device is targeted and the Ethernet MAC is configured in No Clock
SGMII mode, the following constraints should be applied to constrain the recovered clock
and remove meta-stability in the fabric buffer.

http://www.xilinx.com

68 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix C: Constraining the Example Design
R

#---
EMAC# Fabric Rx Elastic Buffer Timing Constraints: -
#---
NET "GTP_DUAL_1000X_inst?RXRECCLK_#_BUFR" TNM_NET = "clk_rec_clk#";
TIMEGRP "<component_name>_client_rec_clk#" = "clk_rec_clk#";
TIMESPEC "TS_<component_name>_rec_clk#" = PERIOD
"<component_name>_client_rec_clk#" 7700 ps HIGH 50 %;

Control Gray Code delay and skew
NET "GTP_DUAL_1000X_inst?rx_elastic_buffer_inst_#?wr_addr_gray<?>"
MAXDELAY = 6 ns;

Reduce clock period to allow 3 ns for metastability settling time
INST "GTP_DUAL_1000X_inst?rx_elastic_buffer_inst_#?rd_wr_addr_gray*"
TNM = "rx_graycode_#";
INST "GTP_DUAL_1000X_inst?rx_elastic_buffer_inst_#?rd_occupancy*"
TNM = "rx_binary_#";
TIMESPEC "ts_rx_buf_meta_protect_#" = FROM "rx_graycode_#" TO
"rx_binary_#" 5 ns;

If a Virtex-5 FXT or TXT device is targeted and the Ethernet MAC is configured in No Clock
SGMII mode, the following constraints should be applied to constrain the recovered clock
and remove meta-stability in the fabric buffer.

#---
EMAC# Fabric Rx Elastic Buffer Timing Constraints: -
#---
NET "GTX_DUAL_1000X_inst?RXRECCLK_#_BUFR" TNM_NET = "clk_rec_clk#";
TIMEGRP "<component_name>_client_rec_clk#" = "clk_rec_clk#";
TIMESPEC "TS_<component_name>_rec_clk#" = PERIOD
"<component_name>_client_rec_clk#" 7700 ps HIGH 50 %;
Control Gray Code delay and skew
NET "GTX_DUAL_1000X_inst?rx_elastic_buffer_inst_#?wr_addr_gray<?>"
MAXDELAY = 6 ns;
Reduce clock period to allow 3 ns for metastability settling time
INST "GTX_DUAL_1000X_inst?rx_elastic_buffer_inst_#?rd_wr_addr_gray*"
TNM = "rx_graycode_#";
INST "GTX_DUAL_1000X_inst?rx_elastic_buffer_inst_#?rd_occupancy*"
TNM = "rx_binary_#";
TIMESPEC "ts_rx_buf_meta_protect_#" = FROM "rx_graycode_#" TO
"rx_binary_#" 5 ns;

GMII/RGMII 1000 Mbps Clock Constraints
If GMII or RGMII are selected and the speed is set to 1000 Mbps then the following
constraints should be applied to the design.

EMAC# TX Clock input from BUFG
NET "TX_CLK_#" TNM_NET = "clk_tx#";
TIMEGRP "<component_name>_gtx_clk#" = "clk_tx#";
TIMESPEC "TS_<component_name>_gtx_clk#" = PERIOD
"<component_name>_gtx_clk#" 7700 ps HIGH 50 %;

EMAC# RX PHY Clock
NET "GMII_RX_CLK_#" TNM_NET = "phy_clk_rx#";
TIMEGRP "<component_name>_gclk_phy_rx#" = "phy_clk_rx#";

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 69
UG340 Getting Started Guide September 19, 2008

Block Level Constraints
R

TIMESPEC "TS_<component_name>_gclk_phy_rx#" = PERIOD
"<component_name>_gclk_phy_rx#" 7700 ps HIGH 50 %;

If the Ethernet MAC is configured in RGMII mode RGMII_RXC_# replaces GMII_RX_CLK_#.

GMII/MII/RGMII 10/100/1000 Mbps Clock Constraints
If the design is used in multi-speed mode the constraints are dependant on whether clock
enable or byte PHY modes are being used.

If the clock enable or Byte PHY options are selected then the following constraints should
be applied to the design.

EMAC0 TX Clock input from BUFG
NET "TX_CLK_#" TNM_NET = "clk_tx#";
TIMEGRP "<component_name>_tx_clk#" = "clk_tx#";
TIMESPEC "TS_<component_name>_tx_clk#" = PERIOD
"<component_name>_tx_clk#" 7700 ps HIGH 50 %;

EMAC0 RX PHY Clock
NET "GMII_RX_CLK_#" TNM_NET = "phy_clk_rx#";
TIMEGRP "<component_name>_clk_phy_rx#" = "phy_clk_rx#";
TIMESPEC "TS_<component_name>_clk_phy_rx#" = PERIOD
"<component_name>_clk_phy_rx#" 7700 ps HIGH 50 %;

If MII is selected, these constraints can be relaxed in Byte PHY mode.

If no advanced clocking options are selected then the following constraints are included in
the <component_name>_block.ucf file.

EMAC# TX Client Clock input from BUFG
NET "TX_CLIENT_CLK_#" TNM_NET = "clk_client_tx#";
TIMEGRP "<component_name>_client_clk_tx#" = "clk_client_tx#";
TIMESPEC "TS_<component_name>_client_clk_tx#" = PERIOD
"<component_name>_client_clk_tx#" 7700 ps HIGH 50 %;

EMAC# RX Client Clock input from BUFG
NET "RX_CLIENT_CLK_#" TNM_NET = "clk_client_rx#";
TIMEGRP "<component_name>_client_clk_rx#" = "clk_client_rx#";
TIMESPEC "TS_<component_name>_client_clk_rx#" = PERIOD
"<component_name>_client_clk_rx#" 7700 ps HIGH 50 %;

EMAC# TX PHY Clock input from BUFG
NET "TX_PHY_CLK_#" TNM_NET = "clk_phy_tx#";
TIMEGRP "<component_name>_phy_clk_tx#" = "clk_phy_tx#";
TIMESPEC "TS_<component_name>_phy_clk_tx#" = PERIOD
"<component_name>_phy_clk_tx#" 7700 ps HIGH 50 %;

EMAC# RX PHY Clock
NET "GMII_RX_CLK_#" TNM_NET = "phy_clk_rx#";
TIMEGRP "<component_name>_clk_phy_rx#" = "phy_clk_rx#";
TIMESPEC "TS_<component_name>_clk_phy_rx#" = PERIOD
"<component_name>_clk_phy_rx#" 7700 ps HIGH 50 %;

If the Ethernet MAC is configured in RGMII mode RGMII_RXC_# replaces GMII_RX_CLK_#.
In MII mode MII_RX_CLK_# replaces GMII_RX_CLK_#. If MII is selected, these constraints
can be relaxed.

http://www.xilinx.com

70 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix C: Constraining the Example Design
R

GMII IDELAY_VALUE Constraints

Figure C-1 and Table C-1 illustrate the input setup and hold time window for the input
GMII signals. These are the worst-case data valid window presented to the FPGA device
pins.

There is, in total, a 2 ns data valid window of guaranteed data that is presented across the
GMII input bus. This must be correctly sampled by the FPGA.

In order to do this IDELAY elements are placed on the GMII_RX_CLK_#,
GMII_RXD_#[7:0], GMII_RX_EN_# and GMII_RX_ER_# inputs. The IDELAY_VALUE
parameters of these elements is set in the UCF file so that the data is sampled correctly. The
constraints shown below are for the example placement given.

Data and control inputs
INST "*gmii#?ideldv" IDELAY_VALUE = 38;
INST "*gmii#?ideld0" IDELAY_VALUE = 38;
INST "*gmii#?ideld1" IDELAY_VALUE = 38;
INST "*gmii#?ideld2" IDELAY_VALUE = 38;
INST "*gmii#?ideld3" IDELAY_VALUE = 38;
INST "*gmii#?ideld4" IDELAY_VALUE = 38;
INST "*gmii#?ideld5" IDELAY_VALUE = 38;
INST "*gmii#?ideld6" IDELAY_VALUE = 38;
INST "*gmii#?ideld7" IDELAY_VALUE = 38;
INST "*gmii#?ideler" IDELAY_VALUE = 38;

Clock input
INST "*gmii_rxc#_delay" IDELAY_VALUE = 0;

Setup and hold information is included in the timing report when the trce command is
invoked with the -u option. This gives information that can be used to set the
IDELAY_VALUE parameters correctly.

Figure C-1: Input GMII Timing

Table C-1: Input GMII Timing

Symbol Min Max Units

tSETUP 2.00 - ns

tHOLD 0.00 - ns

tSETUP

tHOLD

GMII_RX_CLK_#

GMII_RXD_#[7:0]
GMII_RX_EN_#
GMII_RX_ER_#

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 71
UG340 Getting Started Guide September 19, 2008

Block Level Constraints
R

RGMII IDELAY_VALUE Constraints

Figure C-2 and Table C-2 illustrate the input setup and hold time window for the input
RGMII signals. These are the worst-case data valid window presented to the FPGA device
pins.

There is, in total, a 2 ns data valid window of guaranteed data that is presented across the
RGMII input bus. This must be correctly sampled by the FPGA.

In order to do this IDELAY elements are placed on the RGMII_RXC_#,
RGMII_RXD_#[3:0] and RGMII_RX_CTL_# inputs. The IDELAY_VALUE parameters of
these elements is set in the UCF file so that the data is sampled correctly. The constraints
shown below are for the example placement given.

Data and control inputs
INST "*rgmii#?rgmii_rx_ctl_delay" IDELAY_VALUE = 25;
INST "*rgmii#?rgmii_rx_d0_delay" IDELAY_VALUE = 25;
INST "*rgmii#?rgmii_rx_d1_delay" IDELAY_VALUE = 25;
INST "*rgmii#?rgmii_rx_d2_delay" IDELAY_VALUE = 25;
INST "*rgmii#?rgmii_rx_d3_delay" IDELAY_VALUE = 25;

Clock input
INST "*rgmii_rxc#_delay" IDELAY_VALUE = 0;

Setup and hold information is included in the timing report when the trce command is
invoked with the -u option. This gives information that can be used to set the
IDELAY_VALUE parameters correctly.

Figure C-2: RGMII Input Timing

Table C-2: Input RGMII Timing

Symbol Min Max Units

tSETUP 1.00 - ns

tHOLD 1.00 - ns

tSETUP

tHOLD

tSETUP

tHOLD

RGMII_RXC_#

RGMII_RXD_#[3:0],
RGMII_RX_CTL_#

http://www.xilinx.com

72 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix C: Constraining the Example Design
R

LocalLink Level Constraints
The LocalLink level UCF file (<component_name>_locallink.ucf) includes constraints to
handle clock domain crossing in the client FIFOs.

EMAC1 LocalLink client FIFO constraints.

INST "*client_side_FIFO_emac#?tx_fifo_i?rd_tran_frame_tog"
TNM = "tx_fifo_rd_to_wr_1";
INST "*client_side_FIFO_emac#?tx_fifo_i?rd_retran_frame_tog"
TNM = "tx_fifo_rd_to_wr_1";
INST "*client_side_FIFO_emac#?tx_fifo_i?rd_col_window_pipe_1"
TNM = "tx_fifo_rd_to_wr_1";
INST "*client_side_FIFO_emac#?tx_fifo_i?rd_addr_txfer*"
TNM = "tx_fifo_rd_to_wr_1";
INST "*client_side_FIFO_emac#?tx_fifo_i?rd_txfer_tog"
TNM = "tx_fifo_rd_to_wr_1";
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_frame_in_fifo"
TNM = "tx_fifo_wr_to_rd_1";

TIMESPEC "TS_tx_fifo_rd_to_wr_#" = FROM "tx_fifo_rd_to_wr_#" TO
"tx_local_link_clock_#" 8000 ps DATAPATHONLY;
TIMESPEC "TS_tx_fifo_wr_to_rd_#" = FROM "tx_fifo_wr_to_rd_#" TO
"tx_client_clk_#" 8000 ps DATAPATHONLY;

Reduce clock period to allow 3 ns for metastability settling time
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_tran_frame_tog"
TNM = "tx_metastable_#";
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_rd_addr*"
TNM = "tx_metastable_#";
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_txfer_tog"
TNM = "tx_metastable_#";
INST "*client_side_FIFO_emac#?tx_fifo_i?frame_in_fifo"
TNM = "tx_metastable_#";
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_retran_frame_tog*"
TNM = "tx_metastable_#";
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_col_window_pipe_0"
TNM = "tx_metastable_#";

TIMESPEC "ts_tx_meta_protect_#" = FROM "tx_metastable_#" 5 ns
DATAPATHONLY;

INST "*client_side_FIFO_emac#?tx_fifo_i?rd_addr_txfer*"
TNM = "tx_addr_rd_#";
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_rd_addr*"
TNM = "tx_addr_wr_#";
TIMESPEC "TS_tx_fifo_addr_#" = FROM "tx_addr_rd_#" TO "tx_addr_wr_#"
10ns;

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 73
UG340 Getting Started Guide September 19, 2008

Example Design Level Constraints
R

Example Design Level Constraints
The top-level example design UCF file (<component_name>_example_design.ucf) sets
the part to a 5vlx50tff1136-1 device. This should be changed to the desired Virtex-5 FPGA.

The file also contains example placement and IO standard specification. In addition
constraints are provided for the management interface and IODELAY controller clocks.

GMII/MII Interface
 The GMII and MII interfaces are specified to operate at the LVTTL standard.

GMII Logic Standard Constraints
INST "gmii_txd_#<?>" IOSTANDARD = LVTTL;
INST "gmii_tx_en_#" IOSTANDARD = LVTTL;
INST "gmii_tx_er_#" IOSTANDARD = LVTTL;
INST "gmii_rxd_#<?>" IOSTANDARD = LVTTL;
INST "gmii_rx_dv_#" IOSTANDARD = LVTTL;
INST "gmii_rx_er_#" IOSTANDARD = LVTTL;
INST "gmii_tx_clk_#" IOSTANDARD = LVTTL;
INST "gmii_rx_clk_#" IOSTANDARD = LVTTL;
INST "mii_tx_clk_#" IOSTANDARD = LVTTL;

RGMII v2.0 Interface
The RGMII version 2.0 interface is constrained to operate at the HSTL_I standard.

INST "rgmii_txd_#<?>" IOSTANDARD = HSTL_I;
INST "rgmii_tx_ctl_#" IOSTANDARD = HSTL_I;
INST "rgmii_rxd_#<?>" IOSTANDARD = HSTL_I;
INST "rgmii_rx_ctl_#" IOSTANDARD = HSTL_I;
INST "rgmii_txc_#" IOSTANDARD = HSTL_I;
INST "rgmii_rxc_#" IOSTANDARD = HSTL_I;

Example Placement
Example pin placement is specified for the GMII and RGMII interfaces. For all interfaces
the clock inputs are constrained to banks that contain global clock capable inputs.

INST "rgmii_rxd_#<0>" LOC = "BANK4";
INST "rgmii_rxd_#<1>" LOC = "BANK4";
INST "rgmii_rxd_#<2>" LOC = "BANK4";
INST "rgmii_rxd_#<3>" LOC = "BANK4";
INST "rgmii_rx_ctl_#" LOC = "BANK4";

INST "rgmii_rxc_#" LOC = "AF18";

INST "GTX_CLK" LOC = "BANK4";
INST "REFCLK" LOC = "BANK4";

When a serial IO interface is selected, the transceiver is placed in a specific GTP_DUAL or
GTX_DUAL site. This should be changed to the transceiver that is being used:

For Virtex-5 LXT and SXT Devices

INST "*GTP_DUAL_1000X_inst?GTP_1000X" LOC = "GTP_DUAL_X0Y2";

http://www.xilinx.com

74 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix C: Constraining the Example Design
R

INST "MGTCLK_N" LOC = "Y3";
INST "MGTCLK_P" LOC = "Y4";

For Virtex-5 FXT Devices

INST "*GTX_DUAL_1000X_inst?GTX_1000X" LOC = "GTX_DUAL_X0Y3";
INST "MGTCLK_N" LOC = "Y3";
INST "MGTCLK_P" LOC = "Y4";

For Virtex-5 TXT Devices

INST "*GTX_DUAL_1000X_inst?GTX_1000X" LOC = "GTX_DUAL_X1Y5";
INST "MGTCLK_N" LOC = "V3";
INST "MGTCLK_P" LOC = "V4";

GMII/RGMII IODELAY Controller Clock Constraint
In GMII and RGMII modes a 200MHz clock must be provided to control the IODELAY
components. This is constrained in the <component_name>_example_design.ucf file.

NET "*refclk_bufg_i" TNM_NET = "clk_ref_clk";
TIMEGRP "ref_clk" = "clk_ref_clk";
TIMESPEC "TS_ref_clk" = PERIOD "ref_clk" 5000 ps HIGH 50 %;

Host Interface Clock Constraint
If the optional host interface is selected, the following clock constraint is applied in
<component_name>_example_design.ucf. The host interface can share any of the other
Ethernet MAC clocks.

NET "*host_clk_i" TNM_NET = "host_clock";
TIMEGRP "clk_host" = "host_clock";
TIMESPEC "TS_clk_host" = PERIOD "clk_host" 10000 ps HIGH 50 %;

DCR Interface Clock Constraint
If the optional DCR interface is selected, the following clock constraint is applied in
<component_name>_example_design.ucf. The DCR interface can share any of the other
Ethernet MAC clocks.

NET "*dcr_clk_i" TNM_NET = "host_clock";
TIMEGRP "clk_host" = "host_clock";
TIMESPEC "TS_clk_host" = PERIOD "clk_host" 10000 ps HIGH 50 %;

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 75
UG340 Getting Started Guide September 19, 2008

R

Appendix D

SGMII Receiver Elastic Buffer

SGMII Capabilities
The Ethernet MAC wrapper GUI provides two SGMII Capabilities options:

• 10/100/1000 Mbps (no clock constraints required). Default setting; provides the
implementation using the Receiver Elastic Buffer in FPGA fabric. This alternative
Receiver Elastic Buffer utilizes a single block RAM to create a buffer twice as large as
the one present in the transceiver, subsequently consuming extra logic resources.
However, this default mode provides reliable SGMII operation under all conditions.

• 10/100/1000 Mbps OR 100/1000 Mbps (clock constraints required). Uses the receiver
elastic buffer present in the RocketIO transceivers. This is half the size and can
potentially under- or overflow during SGMII frame reception at 10 Mbps operation.
However, there are logical implementations where this can be proven reliable: if so it
is favored because of its lower logic utilization.

FPGA Fabric Rx Elastic Buffer Requirement
Figure D-1 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. Separate oscillator sources are used for the
FPGA and the external PHY. The Ethernet specification uses clock sources with a tolerance
of 100 parts per million (ppm). In Figure D-1, the clock source for the PHY is slightly faster
than the clock source to the FPGA. For this reason, during frame reception, the receiver
elastic buffer (shown here as implemented in the RocketIO transceiver) starts to fill.

Following frame reception, in the interframe gap period, idles will be removed from the
received data stream to return the Rx Elastic Buffer to half full occupancy: this is performed
by the clock correction circuitry (see the Virtex-5 FPGA RocketIO GTP Transceiver User Guide
and Virtex-5 FPGA RocketIO GTX Transceiver User Guide).

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug196.pdf
http://www.xilinx.com/support/documentation/user_guides/ug198.pdf

76 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix D: SGMII Receiver Elastic Buffer
R

Analysis

Assuming separate clock sources, each with a tolerance of 100 ppm, the maximum
frequency difference between the two devices can be 200 ppm. It can be shown that this
translates into a full clock period difference every 5000 clock periods.

Relating this to an Ethernet frame, a single byte of difference every 5000 bytes of received
frame data occurs, causing the Rx Elastic Buffer to either fill or empty by an occupancy of
one.

The maximum sized Ethernet frame (non-jumbo) is of size 1522 bytes for a VLAN frame:

• At 1 Gbps operation, this translates into 1522 clock cycles

• At 100 Mbps operation, this translates into 15220 clock cycles (since each byte is
repeated 10 times

• At 10 Mbps operation, this translates into 152200 clock cycles (since each byte is
repeated 100 times).

Considering the 10 Mbps case, we would need 152200/5000 = 31 FIFO entries in the Elastic
Buffer above and below the half way point to guarantee that the buffer will not under or
overflow during frame reception. This assumes that frame reception begins when the
buffer is exactly half full.

The size of the Rx Elastic Buffer in the RocketIOs is of size 64 entries. However, we cannot
assume that the buffer is exactly half-full at the start of frame reception. Additionally, the
underflow and overflow thresholds are not exact. See the RocketIO User Guides, available
from www.xilinx.com:

• Virtex-5 FPGA RocketIO GTP Transceiver User Guide (UG196)

• Virtex-5 FPGA RocketIO GTX Transceiver User Guide (UG198)

Figure D-1: SGMII Implementation: Separate Clock Sources

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

SGMII Link

10 BASE-T

100BASE-T

1000BASE-T

PHY

FPGA

125 MHz -100 ppm 125 MHz + 100ppm

Virtex-5 Embedded
Tri-Mode Ethernet

MAC Wrapper

RocketIO

Transceiver

Twisted

Copper

Pair

http://www.xilinx.com

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5 www.xilinx.com 77
UG340 Getting Started Guide September 19, 2008

SGMII Capabilities
R

To guarantee reliable SGMII operation at 10 Mbps (non-jumbo frames), the RocketIO
Elastic Buffer must be bypassed and a larger buffer implemented in the FPGA fabric. The
fabric buffer, provided by the example design, is twice the size and so nominally provides
64 entries above and below the half full threshold. This has been proven to cope with
standard (non-jumbo) Ethernet frames at all three SGMII speeds.

The RocketIO Rx Elastic Buffer
The Elastic Buffer in the RocketIO can be used reliably under the following conditions:

• When 10 Mbps operation is not required (for example, when connecting the core to
the 1-Gigabit Ethernet MAC to provide only 1 Gbps operation). Please note that both
1 Gbps and 100 Mbps operation are guaranteed.

• When the clocks are closely related (see below).

If any uncertainty exists, select the FPGA fabric Rx Elastic Buffer Implementation.

Closely Related Clock Sources

Scenario 1

Figure D-2 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. Note that a common oscillator source is
used for both the FPGA and the external PHY.

If the PHY device sources the receiver SGMII stream synchronously from the shared
oscillator (check PHY data sheet), then the RocketIO will receive data at exactly the same
rate as that used by the core: the receiver elastic buffer will neither empty nor fill, having
the same frequency clock on either side.

In this situation, the receiver elastic buffer will not under or overflow and the elastic buffer
implementation in the RocketIO should be used to save logic resources.

Figure D-2: SGMII Implementation: Shared Clock Sources

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

SGMII Link

10 BASE-T

100BASE-T

1000BASE-T

PHY

FPGA

125MHz -100ppm

Virtex-5 Embedded
Tri-Mode Ethernet

MAC Wrapper

RocketIO

Transceiver

Twisted

Copper

Pair

http://www.xilinx.com

78 www.xilinx.com Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC v1.5
UG340 Getting Started Guide September 19, 2008

Appendix D: SGMII Receiver Elastic Buffer
R

Scenario 2

Now consider again the case illustrated by Figure D-1. However, this time, assume that the
clock sources used are both 50 ppm. Now the maximum frequency difference between the
two devices is 100 ppm. It can be shown that this translates into a full clock period
difference every 10000 clock periods, resulting in a requirement for 16 FIFO entries above
and below the half-full point. It can be demonstrated that this provides reliable operation
with the RocketIO Rx Elastic Buffers. Again, see the PHY data sheet to ensure that the PHY
device sources the receiver SGMII stream synchronously to its reference oscillator.

Jumbo Frame Reception
A jumbo frame is an Ethernet frame that is deliberately larger than the maximum-size
Ethernet frame allowed in the IEEE802.3 specification. Jumbo frames require special
consideration to reliably receive frames. Table D-1 defines the maximum-size jumbo
frames that can be received reliably when using the Receiver Elastic Buffer.

Table D-1: Maximum Frame Sizes for Fabric Rx Elastic Buffers (100 ppm Clock Tolerance)

Standard/Speed Maximum Frame Size

1000BASE-X (1 Gbps only) 280000

SGMII (1 Gbps) 280000

SGMII (100 Mbps) 28000

SGMII (10 Mbps) 2800

http://www.xilinx.com

	Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC Wrapper v1.5
	About This Guide
	Contents
	Conventions
	Typographical
	Online Document

	Introduction
	System Requirements
	About the Ethernet MAC Wrapper Core
	Designs Using RocketIO Transceivers

	Recommended Design Experience
	Additional Resources
	Technical Support
	Feedback
	Ethernet MAC Wrapper
	Document

	Quick Start Example Design
	Overview
	Generating the Ethernet MAC Wrapper
	Implementing the Example Design
	Running the Simulation
	Functional Simulation
	Timing Simulation

	What’s Next?

	Customizing the Core
	Ethernet MAC Wrapper Screens
	Core Configuration Options: Screen 1
	EMAC Configuration Options: Screen 2
	EMAC Configuration: Screen 3
	MDIO/EMAC Configuration: Screen 4

	Detailed Example Design
	Directory Structure and File Descriptions
	<project directory>
	<project directory>/<component name>
	<component name>/doc
	<component name>/example_design
	<component name>/example_design/client
	<component_name>/example_design/client/fifo
	<component_name>/example_design/physical
	<component name>/implement
	implement/results
	<component name>/simulation
	simulation/functional
	simulation/timing

	Implementation and Test Scripts
	Setting up for Simulation
	Implementation Scripts for Timing Simulation
	Test Scripts For Timing Simulation
	Test Scripts For Functional Simulation

	Example Design
	HDL Example Design
	10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO
	Address Swap Module
	Physical Interface

	Demonstration Test Bench
	Test Bench Functionality
	Changing the Test Bench

	Using the Client Side FIFO
	Overview of LocalLink Interface
	Receive FIFO Operation
	LocalLink Interface

	Transmit FIFO Operation
	LocalLink Interface

	Clock Requirements
	User Interface Data Width Conversion

	Ethernet MAC Clocking
	Single-Speed Clocking
	1000Base-X PCS/PMA: Virtex-5 LXT and SXT Devices
	1000Base-X PCS/PMA: Virtex-5 FXT and TXT Devices
	PCS/PMA in Overclocking Mode: Virtex-5 LXT, SXT, FXT, and TXT Devices
	GMII/RGMII at 1000 Mbps

	Multi-Speed Clocking
	SGMII at Multiple Speeds: Virtex-5 LXT and SXT Devices
	SGMII at Multiple Speeds: Virtex-5 FXT and TXT Devices
	GMII/MII/RGMII at Multiple Speeds
	GMII/MII at Multiple Speeds with Clock Enable
	RGMII at Multiple Speeds with Clock Enable
	GMII/MII at Multiple Speeds with Byte PHY

	Constraining the Example Design
	Block Level Constraints
	PCS/PMA/SGMII Clock Constraints
	GMII/RGMII 1000 Mbps Clock Constraints
	GMII/MII/RGMII 10/100/1000 Mbps Clock Constraints
	GMII IDELAY_VALUE Constraints
	RGMII IDELAY_VALUE Constraints

	LocalLink Level Constraints
	Example Design Level Constraints
	GMII/MII Interface
	RGMII v2.0 Interface
	Example Placement
	GMII/RGMII IODELAY Controller Clock Constraint
	Host Interface Clock Constraint
	DCR Interface Clock Constraint

	SGMII Receiver Elastic Buffer
	SGMII Capabilities
	FPGA Fabric Rx Elastic Buffer Requirement
	The RocketIO Rx Elastic Buffer
	Jumbo Frame Reception

